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Abstract

We document a regime change in the U.S. Treasury market post-Global Financial Crisis

(GFC): dealers switched from net short to net long bonds. Consistent with this change, we

derive bounds on yields that account for balance sheet costs, the net short and net long curves,

and show that actual yields moved from the net short curve pre-GFC to the net long curve post-

GFC. This regime change helps explain negative swap spreads and the co-movement among

swap spreads, dealer positions, yield curve slope, and covered-interest-parity violations, and

implies changing effects for a wide range of monetary and regulatory policy interventions.
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Introduction

The U.S. Treasury market is one of the most important financial markets in the world. Treasury

bonds have long been considered a safe haven for global investors (e.g. Longstaff (2004), Krish-

namurthy and Vissing-Jorgensen (2012), and Gorton (2017)). In this paper, we document that the

dynamics of Treasury yields changed substantially at the time of the global financial crisis (GFC),

and propose a framework to explain these changes.

Figure 1 shows certain key ways in which the Treasury market has changed pre- and post-GFC,

and illustrates the idea of regimes. Pre-GFC, primary dealers1 maintained a net short position in the

Treasury bonds, and the swap-Treasury spread was positive. Post-GFC, primary dealers switched

to holding a net long position in Treasury bonds and the swap spread became negative. The pre-

GFC regime featured close to zero deviations from covered interest rate parity (CIP), whereas

post-GFC regime features sizable CIP deviations (shown as the negative cross-currency basis of

the euro vis-à-vis the dollar as in Du, Tepper, and Verdelhan (2018b)). Furthermore, in the post-

GFC period, the cross-currency basis strongly co-move with the swap-Treasury spread, and are

negatively correlated with the dealers’ Treasury position.

Another striking fact about the Treasury market post-GFC is an extremely tight correlation

between dealers’ net position and the slope of the Treasury yield curve (measured as the term

spread between the 10-year and 3-month yield), as shown Figure 2. The primary dealers’ net

Treasury position is the mirror image of the Treasury slope. When the yield curve is flat (steep),

primary dealers increase (scale back) their net Treasury position. To the extent that the term spread

proxies for the expected return on long-term Treasury bonds, this relationship is at first puzzling

as dealers increase (reduce) their net holdings exactly when the expected returns on the Treasury

bonds are low (high).

We develop a coherent framework that can explain the facts documented in Figures 1 and

2. Our framework focuses on the interaction of constrained financial intermediaries and return-

seeking Treasury investors, and leads naturally to the idea of regimes in which intermediaries are

net long, net short, or flat with respect to Treasury bonds. We then use our framework to analyze

the effects of monetary and regulatory policy interventions.

1Primary dealers are selected trading counterparties of the Federal Reserve Bank of New York in its implementation
of monetary policy. They are also required to bid on a pro-rata basis in all Treasury auctions at reasonably competitive
prices.
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We first derive bounds on Treasury yields that are consistent with the dealers’ net positions

using a no-arbitrage approach. The key assumption embedded in our approach is that all zero-cost,

zero-balance-sheet trading strategies are at least weakly unprofitable under a common stochas-

tic discount factor (SDF). This assumption is implicit in the models of Jermann (2020) and Du,

Hébert, and Huber (2022). We construct a “net long” curve and a “net short” curve for Treasury

bonds of varying maturities. The net long curve describes a Treasury yield above which a dealer

would always want to be net long Treasury bonds, regardless of its belief of future Treasury yields.

Similarly, the net short curve provides a yield below which a dealer would always be willing to be

net short the bond. The net long and net short curves are themselves functions of the risk-neutral

expectations of future short-term interest rates implied by the overnight index swap (OIS) rates and

future balance sheet costs implied by CIP deviations.2 We find that actual Treasury yields are quite

close to the estimated net short curve pre-GFC and close to the estimated net long curve after-GFC,

across a variety of maturities, consistent with the sign of net dealer positions. As a result, our term

structure provides a quantitative validation of regime change. We develop the net long and net

short curve from the perspective of a securities dealer, but argue that dealers will in effect transmit

their balance sheet costs to hedge funds and other levered clients, consistent with Boyarchenko

et al. (2018). As a result, the curves we develop are applicable for these levered clients as well.

After establishing the empirical relevance of the net long and net short curves, we embed these

bounds in a two-period, two-market supply-demand model for Treasury bonds and synthetic dollar

lending in the foreign exchange (FX) swap market. The model features an intermediary sector and

two types of clients for Treasury bonds. The intermediary sector includes dealers, who finance

their Treasury bond holdings in the tri-party repo market (or short Treasury bonds in the securities

lending market), and levered investors (e.g. relative-value fixed-income hedge funds), who rely

on dealer balance sheet to finance Treasury bonds using repos. These intermediaries take net long

positions when Treasury yields reach the net long curve, and net short positions when Treasury

yields reach the net short curve.

On the client side, we first model real-money investors for Treasury bonds, domestic or foreign,

who do not rely on dealers’ balance sheets to fund their positions. Real-money investors decide

between holding Treasury bills versus long-term Treasury bonds, and their demand for bonds is

2Under the assumption that zero-cost and zero-balance-sheet strategies (e.g. derivatives including swaps with
negligible balance sheet cost and zero initial cost) are priced by a common SDF, such a risk-neutral measure exists;
however, this risk-neutral measure will not pin down the price of cash securities such as Treasuries.
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an increasing function of the expected excess returns on the Treasury bonds. Second, we model

foreign exchange (FX)-hedged foreign investors, who invest in U.S. Treasury bonds financed by

“synthetic dollars” (foreign currency converted to dollars using short-dated FX swaps). A canoni-

cal example of an FX-hedged foreign investor is a Japanese life insurance company, with liabilities

denominated in yen and substantial U.S. dollar fixed-income assets. FX-hedged foreign investors

does not use leverage but nevertheless rely on dealer balance sheets to obtain FX swap hedging.

We assume that FX-hedged foreign investors’ demand for bonds increases in the expected return

on the Treasury bond net the FX hedging cost.

We close the model by imposing market clearing conditions for Treasury bonds and synthetic

dollars, as well as an intermediary balance sheet constraint. The model has a unique equilibrium,

which falls into one of the three regimes: intermediaries are either long, short, or flat with respect

to Treasury bonds. The model generates different comparative statics across these regimes.

Using these comparative statics, we argue that the increase in Treasury supply and tightening

of the balance sheet constraint are sufficient to explain the regime change pre- and post-GFC.

As shown in Figure 3, total assets of the broker-dealer sector reached $6.3 trillion at their pre-

GFC peak in March 2008, but contracted sharply during the GFC to $3.8 trillion in October 2009.

Growth of the broker-dealer assets remains stagnant post-GFC. In contrast, the outstanding of total

marketable Treasury securities (net holdings of the Federal Reserve) grew five fold since 2008,

rising from $4.7 trillion in January 2008 to about $22.5 trillion as of June 2022.

The change in the sign of the swap-Treasury spread post-GFC is consistent in our model with

the intermediary sector switching its Treasury position from net short to net long. In particular,

when the balance sheet constraint binds post-GFC amid a large Treasury supply, the intermediary

maintains a long Treasury position. The negative swap-spread and the CIP deviation co-move, as

the spread that the intermediary can earn by using up its balance sheet to go long in the Treasury

bond (and hedging the duration risk using interest rate swap) must be comparable to the foregone

profits on the CIP trade. The larger the intermediary long position, the higher the shadow cost on

the intermediary balance sheet constraint, and the wider the swap-spread and CIP deviations.

Besides matching the key features of the pre- and post-GFC regimes, the equilibrium model

also delivers a sharp prediction on the relationship among the intermediary positions, spreads, and

expected returns on Treasury bonds post-GFC. When the expected excess returns on the Treasury

bonds are high (as proxied for by a steep yield curve), client demand for Treasury bonds is high, and
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the intermediary Treasury position is low in the equilibrium. This prediction is strongly supported

in the data as shown in Figure 2. When the curve is flat, these intermediaries face low returns on

their Treasury positions, but their hedged returns (hedged with interest rate swaps) are high due to

the relationship between the slope of the curve and swap spreads.3

In the last section of the paper, we discuss several policy interventions in the context of our

two-period model. The model, with minimal modification, is capable of speaking to the effects

of quantitative easing and tightening, inter-central-bank swap lines, regulatory exemptions to the

supplementary leverage ratio (SLR), and interest rate policy. We discuss the effects of each of

these policies, and emphasize how they differ in the long and short regimes. Finally, we discuss

the implications of the framework for the ongoing tightening cycle, and draw a parallel with the

experience of 2017-2019 tightening cycle.

Our paper is most closely related to Jermann (2020) and Du, Hébert, and Huber (2022), in that

we model swap spreads (Jermann (2020)) and CIP violations (Du, Hébert, and Huber (2022)) as

arising from leverage constraints on intermediaries. Jermann (2020) emphasizes the importance

of leverage constraints on intermediaries as an explanation for negative swap spreads. Relatedly,

Favara, Infante, and Rezende (2022) show evidence that SLR shocks have reduced large banks’

participation in the U.S. Treasury market. Du, Tepper, and Verdelhan (2018b), Hébert (2020), and

Du, Hébert, and Huber (2022) argue that CIP deviations can proxy for the shadow cost of the these

constraints. The strong co-movement of CIP violations and swap spreads post-GFC documented

in Figure 1 is consistent with these perspectives.4

Considering these markets together helps address a puzzle: why would long-maturity (e.g. 30

year) swap spreads be affected by fluctuations in current balance sheet costs? The answer sug-

gested by Du, Hébert, and Huber (2022) is that there is a substantial risk premium associated with

the risk that balance sheet costs increase; our quantitative analysis confirms that this risk premium

plays a significant role in long maturity swap spreads. Our quantitative term-structure framework

is substantially more general than the models employed in these papers, and our two-market equi-

librium model is able to address a broader range of policy questions. In contemporaneous work,

Hanson, Malkhozov, and Venter (2022) adopt an approach broadly similar to our two-period model
3The relationship between swap spreads and the yield curve slope in the post-GFC period was documented by

Jermann (2020), among others.
4Recent work by Siriwardane, Sunderam, and Wallen (2021) examines market segmentation across different near-

arbitrages. The correlation between CIP deviations and the swap spread stands out being among the highest, which
supports the use of CIP deviations as a balance sheet cost proxy for Treasury trading activities.
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to explain the way in which shocks to the demand for interest rate swaps affect swap spreads (see

also Klingler and Sundaresan (2019)). Hanson, Malkhozov, and Venter (2022) focus on the swap

market, treating the Treasury market as exogenous, whereas our approach is the reverse. Their

interest is in separating supply and demand shocks, whereas our focus is on providing estimates

of the dealer net long and short Treasury curves, validating the notion of Treasury market regimes,

and analyzing policy interventions.

The change from positive to negative swap spreads is related to the observation that long-dated

Treasury bonds have lost their “convenience yield," with respect to both domestic and international

comparisons. From a domestic perspective, the spread between dollar interest rate swaps and U.S.

Treasury bonds turned from positive pre-GFC to negative post-GFC at long maturities (Feldhütter

and Lando (2008), Klingler and Sundaresan (2019), Jermann (2020), Augustin, Chernov, Schmid,

and Song (2021), and Fleckenstein and Longstaff (2021)). Augustin, Chernov, Schmid, and Song

(2021) propose government default risk as a potential explanation. From an international perspec-

tive, pre-GFC longer-dated U.S. Treasury yields consistently traded below synthetic dollar yields

generated by swapping local currency government bonds issued by other safe havens, such as Ger-

many, into dollars. However, the international “convenience yield” of the U.S. Treasury bonds has

also diminished post-GFC (Du, Im, and Schreger (2018a)).

More recently, the dislocation of the Treasury bond market during the height of the COVID-19

pandemic in March 2020 has led some authors to question whether U.S. Treasury bonds remain

convenient (such as in Duffie (2020) and He, Nagel, and Song (2022)). Relative to this literature,

we highlight the importance of the regime change in the dealers’ net position and the interaction

between dealer balance sheet constraints and client demand for Treasury bonds. Complimentary

to our analysis on the role of dealers, the role of hedge funds in the Treasury market has been

examined in Barth and Kahn (2021) and Kruttli et al. (2021), particularly regarding their activities

in the Treasury cash-futures basis arbitrage funded by dealers’ balance sheets.

The negative correlation between dealers’ net position and Treasury yield curve slope we doc-

ument is the opposite to the pattern observed in typical (excluding the largest) commercial bank

portfolios (Haddad and Sraer (2020)). This contrast emphasizes the importance of distinguishing

between the Treasury activities of securities dealers and commercial bank subsidiaries. Fluctua-

tions in dealers’ inventory have also been linked to overall liquidity conditions (Goldberg (2020)).

The convenience yield literature has argued that Treasury securities are valued not only by their
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cash flows, but also by the superior liquidity and safety (Longstaff (2004); Krishnamurthy and

Vissing-Jorgensen (2012); Greenwood, Hanson, and Stein (2015); Joslin, Li, and Song (2021)),

with macro-finance implications of this convenience discussed in Drechsler, Savov, and Schnabl

(2018), Jiang, Krishnamurthy, and Lustig (2021), and Krishnamurthy and Li (2022). This literature

has focused on the convenience demand for Treasury bonds from non-intermediary investors. Our

results highlight that no convenience demand is needed to explain intermediaries’ demand for

Treasury bonds. In fact, balance sheet costs make Treasury bonds inconvenient for dealers.

The structure of the paper is as follows. We provide institutional background on Treasury

trading by dealers in Section 1. We derive and estimate the net long and the net short curves in

Section 2. We introduce the demand from real-money investors and build an equilibrium model

for Treasury market dynamics in Section 3. We analyze policy implications in Section 4, and in

Section 5 we conclude.

1 Institutional Background

In this section, we explain the mechanics about how dealers go long and short Treasury securities,

and introduce a balance sheet-neutral Treasury trading strategy.

Let us first consider how dealers go net long Treasury bonds. Suppose that the dealer goes

long a zero-coupon Treasury bond of maturity n at time t and unwinds the position at time t + τ

with τ ≤ n. At the onset of the trade at time t, the dealer buys the Treasury bond at yield yn,t ,

and finances the position from money market funds (MMF) via the tri-party repo financing rate

rtri
t , posting the Treasury bond as collateral (see Panel (a) of Figure 4). There is a small haircut,

typically around 2%, for Treasury collateral, so the remaining 2% of the Treasury purchase has

to be financed via unsecured borrowing. To simplify the illustration, in Figure 4, we ignore this

haircut and assume all financing is via the repo market.

A dealer can hedge the interest rate risk of this trade by entering into a swap contract.5 Our

analysis will focus on overnight index swaps (OIS), in which one party pays a fixed rate of interest

in exchange for a series of floating payments indexed to the overnight interbank federal funds

5Dealers have an incentive to hedge their net interest rate risk, due to risk-based capital requirements, but will
typically do so at the trading desk level or the whole book level as opposed to trade-by-trade.
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rate.6 The maturity of the swap is typically set the same as the Treasury bond to avoid maturity

mismatch. In the context of hedging a long Treasury position, the dealer would pay the fixed rate

and receive the floating payments (see Panel (b) of Figure 4). There is a small and relatively stable

spread between the federal funds rate the dealer receives in this scenario and the tri-party repo rate

the dealer pays to finance the bond purchase. Therefore, by hedging with OIS, the dealers remove

the risk of fluctuations in the tri-party repo rate to the first-order.7 At time t+τ (Panel (c) of Figure

4), the dealer unwinds the long position by selling the Treasury bond at a new price e−(n−τ)yn−τ,t+τ

(where yn−τ,t+τ is the log yield at the time of sale) and paying back the repo loan from MMF. The

dealer also unwinds the swap contract.

During this trade, the dealer will have a larger balance sheet, equal to the additional Treasury

net long position.8 We will consider trading strategies in which the dealer offsets the balance

sheet effects of buying and financing a Treasury bond by reducing another balance-sheet-intensive

activity, covered-interest-rate-parity (CIP) arbitrage, as shown in Figure 6. The mechanism of the

CIP trade involves borrowing dollars in the unsecured cash market and lending dollars in the FX

swap market for most of the major currency pairs, such as euro-dollar and the dollar-yen (Du,

Tepper, and Verdelhan (2018b)). The dealer will be willing to take the Treasury bond position and

reduce its CIP activity if this zero-cost, zero-balance-sheet trading strategy earns excess returns

under the dealer’s SDF.

We have considered CIP arbitrage as an alternative to taking a net Treasury position. In prac-

tice, dealers might be engaged in many other activities besides trading Treasurys and CIP. The

advantage of considering the CIP trades, however, is that CIP violations have a term structure that

allows us to proxy for the shadow cost of dealer balance sheet constraints at multiple maturities

(Du, Hébert, and Huber (2022)).

A trading strategy in which the dealer goes net short a zero-coupon Treasury bond works in

6Prior to the GFC, swaps indexed to LIBOR were more commonly used, and recently swaps indexed to SOFR
(Secured Overnight Financing Rate) have been introduced. OIS rates are available for our entire sample and are
similar to LIBOR swap rates pre-GFC and to SOFR swap rates in the recent period.

7An exact interest rate hedge would be selling an interest rate swap indexed to the floating tri-party repo rate. Thus,
the difference between tri-party repo rate and OIS rate induces some remaining basis risk.

8To a first approximation, the interest rate swap is entirely off-balance-sheet. More precisely, trading interest rate
swaps can increase the balance sheet constraint slightly. The total exposure includes initial and variation margins
(typically a couple percent of total notional), and an additional 0-1.5% of the swap notional calculated for off-balance
sheet interest rate derivative exposure using the Current Exposure Method, depending on the maturity of the interest
rate swaps. We ignore the additional balance sheet costs of trading derivatives to simplify our analysis.
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similar fashion, with a few key differences, and is illustrated in Figure 5. At time t, the dealer

posts cash as collateral to borrow a Treasury bond from a security lender, and then short sells it at

the current market price e−nyn,t . The security lender offers the dealer interest on this cash, at the

rate rsec
t , and re-invests the cash at a higher rate, earning a spread. We assume there is no haircut

applied to the security lending transaction.9 We document in Internet Appendix Section C.2 that

the rate security lenders pay to dealers is typically roughly 25 basis points below the tri-party repo

rate, even for securities that are not “special”, using data from Markit Securities Finance.

The dealer can again choose to hedge the interest rate risk of this strategy with an OIS swap

(Panel (b) of Figure 5). In this case, the dealer would pay the federal funds rate and receive the

fixed rate. The federal funds rate will in general have a non-trivial but stable (≈ 25bps) spread over

the security lending rate.10 Finally, at date t + τ (Panel (c) of Figure 5), the dealer buys back the

bond and then returns it to the security lender, receiving back the cash collateral. The dealer also

unwinds the swap contract.

Similar to the net long Treasury position, the net short position also increases the size of the

dealer’s balance sheet. The asset in this case is a repo loan to the security lender (the dealer has

given the security lender cash in exchange for Treasury collateral), and the liability is a security

to be delivered. We can again construct a zero-cost, balance-sheet-neutral trading strategy by

assuming that the dealer simultaneously goes net short the Treasury bond and reducing its CIP

arbitrage activity (See Figure 7 for an illustration).

2 The Long and Short Treasury Yield Curves

In this section, we construct what we call “net long” and “net short” yield curves. These yield

curves represent (approximate) arbitrage bounds at which a dealer would be willing to go net long

or net short Treasury bonds. In frictionless models, there is a single yield curve. At yields above

this yield curve, dealers would want to go net long bonds, while at lower yields, dealers would

want to go net short bonds. In our model, two frictions create a wedge between the yield at which

9In practice, dealers might demand a haircut when lending cash to clients and be required to provide excess cash
(a negative haircut) when borrowing from securities lenders. Baklanova et al. (2019) pools these two cases and
demonstrate that the haircut is small in absolute value (a few percent at most). We therefore assume a zero haircut for
want of better evidence, and would like to thank Sebastian Infante for making us aware of this issue.

10When shorting a coupon bond, the dealer also has to pay the security lender the bond coupons.
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dealers would go net long and the yield at which dealers would go net short.

The first friction is balance sheet costs. As emphasized in the previous section, going either

net long or net short a Treasury bond increases the size of dealer balance sheets. This has an

opportunity cost, and this opportunity cost acts like a tax on both these trades. It raises the yield

dealers require when going net long, while lowering the yield they require when going net short.

We proxy for the balance sheet costs using the term structure of CIP deviations.

The second friction is the difference in financing cost in the repo market to finance long position

and the cash lending rate in the securities lending market associated with the short position. When

a dealer goes net long, they can finance that position at the tri-party repo rate. When a dealer takes

a net short position, they receive interest on the cash they lend in exchange for the Treasury bond.

If the dealer can find a hedge fund client who owns the bond, they will likely receive a relatively

high interest rate. However, if the dealer cannot find such a client, they will instead borrow the

security from a security lender, in which case they will receive a rate below the tri-party repo rate.

Since our goal is to construct a yield at which the dealer would definitely be willing to go net-short,

we will assume the dealer will receive the lower security lending rate as opposed to a higher rate

on its cash when shorting.

We proceed in four steps. First, we will introduce a very simple model of dealer behavior, to

illustrate the trade-off a dealer faces between going net long or short Treasury bonds and other

arbitrage activities. Second, we generalize the ideas illustrated in this simple model, and construct

the net long and net short curves. Third, we discuss the assumptions under which these curves

represent arbitrage bounds. Finally, we build a term structure model to estimate the net long and

net short curves.

2.1 A Simple Model of Dealers and Arbitrage

We first consider the problem of a risk-neutral dealer who can choose between trading a single

n-period zero-coupon Treasury bond and a one-period CIP arbitrage, subject to a fixed balance

sheet constraint. Let qbond be the dealer’s bond position (in dollars, not notional), with negative

values implying short-selling. Let qsyn be the dealer’s “synthetic dollar” position (in dollars), which

we define as the currency hedged investment leg of the CIP arbitrage (the other leg is borrowing

dollars). We assume that the synthetic dollar rate (e.g. the currency-hedged euro rate) is above the

dollar borrowing rate, so that the direction of the arbitrage is to buy the synthetic dollars (qsyn > 0).
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Suppose the dealer faces a fixed balance sheet constraint,

qsyn + |qbond|= q̄, (1)

where q̄ > 0 is the limit on dealer balance sheet size. Note that the absolute value of qbond enters

this expression, reflecting the fact that both long and short positions require balance sheet. The

assumption of a fixed balance sheet capacity simplifies our analysis but is not essential to the

argument, and we do not impose it in the more general term structure analysis in Section 2.4.

Let y be the log-yield on the Treasury bond, and let pQ be the risk-neutral expectation of the

bond price in the next period when the trade will be unwound. We assume, following the discussion

above, that if the dealer buys the bond, the dealer will finance its position with a mix of tri-party

repo financing at log repo rate rtri and unsecured financing at the one-period log OIS rate rois. The

haircut h determines this mix.11 If the dealer instead short-sells the bond, it receives a log return

rsec on its cash. If the dealer lends in the synthetic dollar market, it receives a different log return

rsyn (e.g., the euro risk-free rate swapped to dollars) on its cash. By definition, the one-period

CIP deviation is the difference between the one-period synthetic return and the one-period dollar

return, rcip = rsyn − rois (note that this definition is exactly the opposite to the CIP basis). We have

assumed that rcip > 0.

The dealer’s problem is

max
qbond ,qsyn

max{qbond,0} · ( pQ︸︷︷︸
sell after one period

−(1−h) · e−nyertri︸ ︷︷ ︸
secured financing

−h · e−nyerois︸ ︷︷ ︸
unsecured financing

)

+ max{−qbond,0} · ( e−nyersec︸ ︷︷ ︸
earn security lending rate on short-sold cash

− pQ︸︷︷︸
buy back at time 1

)

+ qsyn · (ersyn
− erois

)︸ ︷︷ ︸
synthetic lending spread

(2)

subject to the balance sheet constraint in (1).

From this problem, it is straightforward to show that dealers are willing to go net long the bond

11Consistent with the data, we are assuming that the tri-party rate is below the unsecured rate, and that the dealer
borrows as much as possible using tri-party.
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(qbond > 0) if the yield y ≥ yl , where yl (the “net long yield”) is defined as

e−nyl
≡

pQ
(1−h)(ertri − erois

)+ ersyn , (3)

Likewise, the dealer will be willing to go net short if the bond’s yield y ≤ ys, where ys (the “net

short yield”) is defined as

e−nys
≡

pQ
ersec

+ erois − ersyn . (4)

Now suppose that rates and prices are such that the dealer is always willing to make synthetic

loans (qsyn > 0). If this assumption holds, we must have y ∈ [ys,yl]. Intuitively, if the dealer is

willing to make synthetic loans, the returns on buying or short-selling the Treasury cannot dominate

the returns on synthetic lending.

To gain further intuition, consider the case of a one-period bond that matures next period (pQ =

1). The log-linearized version of (3) and (4) is as follows:

yl ≈ rois − (1−h)(rois − rtri)+ rcip, (5)

ys ≈ rois − (rois − rsec)− rcip, (6)

The net long yield can differ from the OIS rate for two reasons. First, holding Treasury bonds

takes up bank balance sheet, so the yield has to be higher than the OIS rate by an amount equal to

the opportunity cost of the balance sheet (measured by rcip). Second, if dealers’ repo financing rate

is lower than their unsecured funding cost, rtri < rois, then there is a financing benefit to owning

the Treasury bond, which makes the dealer willing to accept a lower yield.

The net short yield can differ from the OIS rate for similar reasons. The impact of the opportu-

nity cost of balance sheet affects the sell yield with a negative sign. The sell yield has to be lower

(the price to be higher) to justify dealer’s short position, which also takes balance sheet. The sell

yield is further lowered if the return on the cash collateral is lower than the dealer’s borrowing cost,

rsec < rois.

We next extend the logic of these yields to a more general, multi-period setting, constructing

what we will call the “net long curve” and “net short curve.”
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2.2 The Net Long and Net Short Curves

We make three key assumptions: (i) all zero-cost, zero-balance-sheet trading strategies are weakly

unattractive under a common (across such trading strategies) SDF (i.e. 0 ≥ E[MR] in the standard

notation), (ii) some synthetic dollar lending occurs in equilibrium, and (iii) interest rate swaps and

cross-currency basis swaps are priced by this same SDF. We will interpret this SDF as a dealer’s

SDF, under the usual intermediary asset pricing assumption that dealers are active in all of these

markets. The first two of these assumptions hold in the simple model above: the strategy of in-

creasing or decreasing qbond , financed with repo or sec. lending, and offsetting the change in

balance sheet by changing qsyn, is weakly unattractive under the risk-neutral SDF, and by assump-

tion qsyn > 0. Our third assumption (that the SDF prices swaps) is relevant only in the multi-period

context. Note that we have made no assumptions on the pricing of balance-sheet-increasing or

balance-sheet-reducing strategies, and hence are agnostic about why dealers find it costly to in-

crease the size of their balance sheet.

Let Q denote the risk-neutral measure associated with this SDF. Assume that all rates are annual

and that each period is one month. Consider the strategy of going long the Treasury bond at yield

yn,t , financing via repo, and offsetting the balance sheet effect by reducing CIP activity. We must

have

(1−h) · e−nyn,t ertri
t︸ ︷︷ ︸

secured financing

+h · e−nyn,t erois
t︸ ︷︷ ︸

unsecured financing

+e−nyn,t (e
1

12 rsyn
t − e

1
12 rois

t )︸ ︷︷ ︸
forgone CIP profits

≥ EQ
t [e−(n−1)yn−1,t+1 ]. (7)

The left-hand side of this expression represents costs paid at time t + 1. The repo loan must be

repaid (the first term), the unsecured financing must also be repaid (the second term), and the

profits of the forgone CIP arbitrage are lost (the third term). These must be weighed against the

benefits of selling the bond at time t + 1 (which was pQ in our simple model above). Note that

because both sides of this equation are defined in terms of t+1 payoffs, the discount rate associated

with the SDF is irrelevant.

Define the monthly log interest rate

x1,t = ln((1−h)(e
1

12 rtri
t − e

1
12 rois

t )+ e
1

12 rsyn
t ), (8)
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and iterate:

e−nyn,t ≥ e−nyl
n,t = EQ

t [exp(−
n−1

∑
j=0

x1,t+ j)]. (9)

The yield curve yl
n,t defines what we call the “net long curve.” This curve represents the point at

which dealers would be willing to switch from CIP arbitrage activity to taking a net long posi-

tion in a Treasury bond. Since zero-cost, zero-balance-sheet strategies are weakly unattractive by

assumption, this net long curve is, by induction, an upper bound on Treasury yields.

This net long curve can also be viewed as a lower bound on swap spreads (defined as the

difference between OIS swap rates and Treasury yields of matching maturity). Let rcip
n,t be the n-

period CIP violation (the n-period synthetic dollar rate minus the n-period OIS rate). Linearizing

(9) and defining rois
n,t as the n-period OIS swap rate,

rois
n,t − yn,t ≥ rois

n,t − yl
n,t ≈− rcip

n,t︸︷︷︸
n-period CIP violation

+ EQ
t [

1
n

n−1

∑
j=0

((1−h)(rois
t+ j − rtri

t+ j)︸ ︷︷ ︸
financing benefit

]. (10)

The difference between short-maturity OIS swap rates and tri-party repo rates is generally small

and stable over time. As a result, equation (10) implies that if yields are close to the net long curve,

we should expect swap spreads to be negative and close in absolute value to the matched-maturity

cross-currency basis.

We should also emphasize the important role of risk premia that is hidden in this expression.

The n-period CIP violation rcip
n,t is well above the physical (P) measure expectation of future short-

maturity CIP violations, as emphasized by Du, Hébert, and Huber (2022). That is, net long curve

yields are higher than OIS rates both because of expectations of non-zero future balance sheet costs

and because of the risk associated with the possibility that these costs become larger.

We develop the net short curve via similar logic. Consider the strategy of short-selling the

Treasury bond at yield yn,t , borrowing the bond in the security lending market, and offsetting the

balance sheet effect by reducing CIP activity. We must have

e−nyn,t︸ ︷︷ ︸
sale price

e
1

12 rsec
t︸ ︷︷ ︸

gross return on cash in sec. lending

≤ EQ
t [e−(n−1)yn−1,t+1]︸ ︷︷ ︸

repurchase price

+e−nyn,t (e
1
12 rsyn

t − e
1
12 rois

t )︸ ︷︷ ︸
forgone CIP profits

. (11)

The left-hand side of this expression is the cash generated at date t +1 by selling the bond, posting
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the cash to the security lending, and receiving the security lending rate. The right-hand side repre-

sents the costs of this trade at date t +1, including both the cost of repurchasing the bond and the

forgone CIP profits. Define the monthly log interest rate

x2,t = ln(e
1

12 rsec
t + e

1
12 rois

t − e
1
12 rsyn

t ) (12)

and iterate:

e−nyn,t ≤ e−nys
n,t = EQ

t [exp(−
n−1

∑
j=0

x2,t+ j)]. (13)

The yield curve ys
n,t defines what we call the “net short curve.” This curve represents the point at

which dealers would be willing to switch from CIP arbitrage activity to taking a net short position

in a Treasury bond.

The net short curve defines a lower bound on yields. It can also be viewed as an upper bound

on swap spreads. Linearizing (13),

rois
n,t − yn,t ≤ rois

n,t − ys
n,t ≈ rcip

n,t︸︷︷︸
n-period CIP violation

+ EQ
t [

1
n

n−1

∑
j=0

(rois
t+ j − rsec

t+ j)︸ ︷︷ ︸
security lending spread

]. (14)

The difference between the short-maturity OIS swap rate and the security lending rate is positive,

and the n-period CIP violation in our definition is also positive and proxies for the balance sheet

cost. Taking these two forces together, equation (14) implies that if yields are close to the net short

curve, we should expect positive swap spreads.

Our assumptions are sufficient to determine an upper and lower bound on Treasury yields (or,

equivalently, on swap spreads), but are not enough to pin down Treasury yields themselves. In a

frictionless world with rois
t = rsec

t = rtri
t and no balance sheet cost, the net long and net short curves

converge to one curve and thus exactly pin down Treasury yields. In the presence of frictions,

yields can fall anywhere in between the net short and net long curves. We will show, empirically,

that yields were close to the net short curve before the GFC and close to the net long curve after

the GFC. We will then construct a model in which dealers interact with non-dealers. In this model,

the demands of non-dealers will determine where Treasury yields fall within the net short and net

long curve bounds.
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2.3 Discussion

Before proceeding, we elaborate on the interpretation of these curves and on the role of interest

rate swap hedges in this framework.

The Net Short and Net Long Curves as Arbitrage Bounds. The bound yn,t ∈ [ys
n,t ,y

l
n,t ] is an

arbitrage bound if yn−1,t+1 ∈ [ys
n−1,t+1,y

l
n−1,t+1] with probability one, which follows from our first

two key assumptions. This observation gives rise to the following interpretation: the net long yield

is a yield at which a dealer would be willing to go long even if the dealer believed all dealers would

be net long the bond in the future with probability one. Likewise, the net short yield is the yield

at which a dealer would be willing go short, even if the dealer believed all dealers would be net

short in the future with probability one. Yields falling in between these bounds can be loosely

interpreted as related to the probability that dealers will be either net long or net short in the future.

In Internet Appendix Section B, we show that under relaxed assumptions, if yn,t > yl
n,t , dealers

will perceive an arbitrage opportunity, even if it is not guaranteed that future yields are within

the bounds, i.e., if it is possible that yn−1,t+1 ≤ yl
n−1,t+1. The net short curve does not share this

property. However, we are able to derive a lower value for yields which we call “partial equilibrium

net short curve” such that the dealer will always be willing to go short, and show that the net short

curve described in the main text is a close approximation of this partial equilibrium net short curve.

Pre-GFC and Post-GFC. Pre-GFC, synthetic lending rates were close to OIS rates (i.e. CIP

violations were roughly zero), and security lending rates were roughly 25 basis points below one-

month OIS swap rates. As a result, during this period, x2,t was roughly the one-month OIS rate

less 25 basis points. It follows that net short curve yields ys
n,t were lower than matched-maturity

OIS rates by about the same amount, which is to say there was a significant positive “swap spread”

between OIS rates and the net short curve. In contrast, the net long curve during this period was

only about five basis below OIS rates, reflecting the difference between tri-party repo rates and the

federal funds rate.

Post-GFC, synthetic lending rates are well above OIS rates, and the spread between OIS and

tri-party repo rates is small. In this period, x1,t is approximately equal to the synthetic lending

rate. As a result, net long curve yields yl
n,t are approximately the same as synthetic swap rates

(i.e. EUR swap rates converted to dollars), which are OIS rates plus the CIP basis of the same
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maturity. This leads to a significant “negative swap spread” between OIS rates and the net long

curve. In contrast, the net short curve now features rates far below OIS rates (large and positive

swap spreads), reflecting both the spread between security lending rates and one-month OIS rates

and the synthetic-OIS spread (i.e. CIP violations).

Actual swap spreads between OIS rates and Treasury yields went from being large and positive

pre-GFC to negative post-GFC. This fact, combined with the discussion above, previews our result

that Treasury yields went from being close to the net short curve pre-GFC to close to the net long

curve post-GFC. We will discuss the causes and consequences of this shift in Sections 3 and 4.

Hedging with Swaps. It is standard practice to hedge a Treasury position with an interest rate

swap. Prior to the GFC, hedging using LIBOR swaps was typical; following the GFC, OIS rose

in prominence, and more recently swaps based on repo rates (SOFR swaps) have begun to trade.

There are a range of approaches: hedging can be static or dynamic, and based on matching matu-

rity, duration, or cashflows.

Hedging Treasury bonds with interest rates swaps leaves the dealer exposed to mark-to-market

risk associated with fluctuations in the Treasury-swap spread. In our log-linearized equations (10)

and (14), we can see that the swap spreads for the net-long and net-short curve depend on the risk-

neutral expectations of future balance sheet constraints and residual basis spreads between money

market rates.

Thus, the net long curve yl
n,t can be hedged with a synthetic dollar swap (by swapping EUR

rates to dollars), under the assumption that the tri-party repo vs. short-term OIS swap spread is

stable. The net short curve ys
n,t can be hedged via a combination of OIS and synthetic dollar swaps,

under the assumption that the spread between security lending rates and short-term OIS swap rates

is stable.

If one assumes that a Treasury yield will always be at one end of these boundaries, then the

Treasury bond itself can be hedged. But note that the hedge will differ depending on which of the

two boundaries is assumed to apply, and in neither case is the hedge a single overnight index swap.

The intuition for this result is that balance sheet costs matter, and hedging the Treasury bond with

OIS hedges interest rate risk but does not hedge balance sheet cost risk.
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Yields and Positions. The net short and net long curves we construct are estimates of yields at

which the dealer should be willing to take a net position in a Treasury bond, after accounting for

financing and balance sheet costs. This definition leads naturally the prediction that if the yield is

at the net long yield, dealers should be net long, and if the yield is at the net short yield, dealers

should be net short. These bounds are constructed from possibly unreasonable beliefs about the

stochastic process driving bond prices. As a result, we should not be at all surprised if dealers are

willing to go long at yields below the net long yield or go short at yields above the net short yield.

Moreover, the yield of a Treasury bond relative to these curves does not directly determine

the scale of dealer positions. For example, if the yield is at the net long yield, dealers should

be net long, but the quantity by which they will be net long will depend on their balance sheet

capacity, risk tolerance, and other considerations that cannot be inferred directly from yield curves.

Nevertheless, we should expect net dealer positions to increase when yields move close to the net

long yield and to decrease (become net short) when yields move close to the net short yield. We

can construct a heuristic mapping from yields to position via this intuition.

Dealers and Levered Clients. In developing the net long and net short curves, we have adopted

the perspective of a Treasury dealer. In Internet Appendix Section A, we argue that these curves

are also arbitrage bounds from the perspective of the dealer’s levered clients (i.e. hedge funds).

Dealers’ balance sheet costs are in effect transmitted to these clients via bilateral lending markets,

a point emphasized by Boyarchenko et al. (2018). In what follows, we will treat dealers and their

levered clients as a consolidated entity.

2.4 The Term Structure Model

To construct the net long and net short curves, we need to construct the risk-neutral expectations

of x1,t+ j and x2,t+ j. This is where our third assumption, that interest rate swaps and cross-currency

basis swaps are priced by the common SDF, applies. These risk-neutral expectations are deter-

mined primarily by the OIS swap curve and the term structure of CIP violations. We will proceed

by constructing an SDF (in particular, a term structure model) that fits these swap rates, and then

use that SDF to construct the net long and net short curves.

We construct these curves using a term structure model. At the heart of our calculations is a

comparison between a Treasury hedged with OIS and a CIP violation of the same maturity. A
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rough version of this comparison can be done without a model: one simply compares the yield

spread on the Treasury vs. OIS with the CIP violation. Our term structure model allows for a more

careful version of this comparison. First, it allows us to consider Treasury bonds with maturities

that do not exactly line up with the available points of the OIS and CIP curves. Second, it allows

us to explicitly account for the residual basis risk between money market rates. Third, it allows us

to model the unwinding of the trade when the bond has six months remaining maturity. Fourth, it

smooths the OIS and CIP curves, reducing micro-structure-induced noise. Lastly, it accounts for

covariances that are omitted from the naive spread calculation.

Our term structure model largely follows the standard approach in the no-arbitrage term struc-

ture model literature (Joslin, Singleton, and Zhu, 2011; Joslin, Priebsch, and Singleton, 2014). At

first glance, this might seem strange, given that our model necessarily features arbitrage. In partic-

ular, our term structure model must match both OIS rates and CIP violations, which is equivalent to

matching dollar OIS rates and synthetic dollar OIS rates (CIP violation = synthetic dollar OIS rate

− dollar OIS rate). We view the CIP violations as a proxy for dealer balance sheet costs. Due to this

balance sheet cost, the term structure model features two different short rates and as a result two

different yield curves, as in Augustin, Chernov, Schmid, and Song (2020). We adopt an essentially

identical approach when constructing our model. We use a no-arbitrage approach (as opposed to

other methods of yield curve interpolation) on the grounds that derivatives are largely unaffected

by leverage and related regulations and that all empirical violations of arbitrage conditions we are

aware of involve cash products in addition to derivatives.

We will use lower case symbols to denote scalars or vectors and uppercase symbols to denote

matrices, and assume each time period is one month. We follow the convention that all rates and

yields are expressed at yearly frequency, so we will scale them by 1/12 to obtain the monthly

yield. Let zt denote a vector of N risk factors (our empirical exercise will have N = 5) for our term

structure model. We assume that, under the physical (actual) probability measure P, zt follows a

Gaussian AR(1) process,

zt+1 = kP0,z +KP
1,z · zt +(Σz)

1/2
ε
P
z,t+1,ε

P
z,t+1 ∼ N(0, IN), (15)

where IN is the N ×N identify matrix, kP0,z is an N ×1 vector of constants, KP
1,z is an N ×N matrix,

and Σz is a symmetric positive semi-definite N × N matrix. The intermediary’s log stochastic
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discount factor that prices derivatives is

mt+1 =−(δ0 +δ
T
1 · zt)−

1
2

λ
T
t λt +λ

T
t ε

P
z,t+1, (16)

where λt = (Σ−1
z )(λ0 +Λ1zt) is the price of risk associated with each shock. We will assume

that the profits of derivatives trades are discounted using the OIS curve, consistent with industry

practice.12 That is, rois
t = δ0 + δ T

1 · zt , where rois
t is the log of the annualized fixed rate associated

with a one-month overnight index swap.

This standard specification leads to a risk-neutral (Q) measure dynamics for the state vector zt ,

zt+1 = kQ0,z +KQ
1,z · zt +(Σz)

1/2
ε
Q
z,t+1,ε

Q
z,t+1 ∼ N(0, IN), (17)

where the parameters kQ0,z and KQ
1,z are functions of the physical measure parameters and the SDF

parameters. It also leads zero coupon-swap rates that are affine in the state vector,

rois
n,t =−12

n
ln(EQ

t [exp(
n−1

∑
j=0

− 1
12

rois
t+ j)]) = aois

n +(bois
n )T zt , (18)

where rois
n,t denotes log of the annual fixed rate associated with an n-month OIS swap.

The one-month log CIP violation is likewise assumed to be affine,

rsyn
t = δ̂0 + δ̂1zt , (19)

which generates the recursion

rsyn
n,t =−12

n
ln(EQ

t [exp(
n−1

∑
j=0

− 1
12

rsyn
t+ j)]) = asyn

n +(bsyn
n )T zt . (20)

We assume that the rates xt = (x1,t ,x2,t ,
1

12ybill
t ) are affine functions of our state variable, where

x1,t and x2,t are the discount rates associated with our net short and net long curves, and ybill
t is the

12The choice to use OIS rather than some other discount rate does not substantially impact our results, as we use
the SDF only to price zero-NPV derivatives, whose value is not sensitive to shifts in the level of the discount rate.
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log annualized yield on a six-month Treasury bill. We assume that

xt = γ0 +Γ1zt +(Σx)
1
2 εx,t ,εx,t ∼ N(0, I3). (21)

These additional variables can be thought of as akin to the “macro factors” often included in stan-

dard term-structure models. The key assumption is that the measurement errors εx,t do not enter

the SDF (and hence have the same distribution under P and Q). The coefficients γ0 and Γ1 can be

identified from regressions of these factors on the state variables.13

Finally, we assume that the dealer unwinds their position when the remaining maturity reaches

six months, at which point the Treasury bond is equivalent to a Treasury bill. We make this

assumption to capture the empirical observation that, pre-GFC, bill yields fell below other short-

term risk-free rates such as tri-party repo rates (see e.g. Nagel (2016)). Incorporating this effect is

important when constructing bounds on a one-year bond (which will become equivalent to a bill

relatively soon) but has a minimal effect on long-maturity bonds. The curves we construct are thus

e−nyl
n,t = EQ

t [exp(−
n−7

∑
j=0

x1,t+ j)exp(− 6
12

ybill
t+n−6)], (22)

e−nys
n,t = EQ

t [exp(−
n−7

∑
j=0

x2,t+ j)exp(− 6
12

ybill
t+n−6)]. (23)

Under the assumptions of our term structure model, these curves are also affine in the state vari-

ables.
13The tri-party repo and secured lending rates are overnight rates. Given data limitations, we use overnight tri-party

repo rates and overnight security lending rates to construct xt . The 1-month CIP basis data are available, but to avoid
the quarter-end effect (Du et al., 2018b), we instead use the 3-month CIP basis to obtain the synthetic rate in xt . Our
estimation reveals that there are unit-root elements in the zt process. A more sophisticated approach is to restrict that
the spreads x1,t − rois

t − rcip
t , x2,t − rois

t + rcip
t , and x2,t − rois

t are stationary, i.e., zero loadings on the unit-root element.
Our main approach is the direct regression of xt on zt , but we show in the internet appendix that results are similar if
we impose stationarity on the spreads. See Internet Appendix Section E for more details.
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2.5 Model Estimations and Predictions

We obtain data from various public sources, as documented in Internet Appendix Section C. We

then estimate the term structure model to fit dollar OIS rates and synthetic dollar OIS rates,14 using

a standard maximum likelihood approach. The goal of our estimation procedure is to accurately

fit and interpolate these curves. Figures 8 and 9 illustrate the fit of our model. For details on the

estimation procedure and on related issues such as coupon vs. zero-coupon bonds, see Internet

Appendix Section E.6.

In Figure 10, we show the model-implied net long and net short curves, in comparison with

the Treasury yield curve. In Figure 11, we subtract matched-maturity OIS rates from all the yield

curves in Figure 10.

Several patterns are immediately apparent. Prior to the GFC, yields for one, three, five, and ten-

year bonds were often close to the net short curve, consistent with the net position data. In contrast,

twenty-year maturity bonds are often close to the net long curve. Our model therefore predicts that

dealers would be short intermediate-maturity bonds and long longer-maturity bonds. We validate

this prediction in more detailed position data below. We should also note that, because there

are substantially more intermediate-maturity than long-maturity bonds outstanding, this pattern

naturally generates an overall net short position.15 After the GFC, all yields for bonds of one-

year-maturity or greater are close to the net long yield, suggesting that dealers will be long coupon

bonds. This is again consistent with the position data.

Note that the six-month yield is constructed by regressing bill yields on the factors of our term

structure model, and by assumption the net long and net short curves are identical at this maturity.

We include it in these graphs to illustrate that, for the most part, our model captures the fluctuations

in the bill-OIS spread. These fluctuations play an important role in the movements of the net long

and net short curves at the one-year maturity point; they play a relatively minimal role for longer

maturities. Intuitively, movements in the six-month bill-OIS spread are amortized over longer

maturities and hence have only small effects on longer-maturity yields.

We next compare Treasury yields relative to the net short and net long curves to position data

14We use OIS rates because they do not contain a significant credit risk component (unlike LIBOR rates post-GFC).
Pre-GFC, OIS rates and LIBOR rates are almost identical, and we can use LIBOR rates to extend the sample periods.
See more details in Internet Appendix Section C.

15Our model has no specific predictions about how dealers should allocate their long/short positions across various
arbitrages. In making this argument, we are assuming that, all else equal, larger markets lead to larger positions.
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for specific bond maturity buckets. As discussed above, a bond’s yield relative to the net short and

net long curve bounds serves as a heuristic proxy for dealer positions. We define a "relative yield

index" by

posn,t = 2∗
yn,t − ys

n,t

yl
n,t − ys

n,t
−1. (24)

This index takes on a value of one if the yield of the n-month maturity Treasury bond is equal to

the net long yield, negative one if it is equal to the net short yield, and zero if it is equal to the

average of the net long and net short yields.

We then plot this relative yield index against the net dealer position by maturity bucket. We

obtain the net primary dealer coupon Treasury bond position in maturity buckets of <3 years, 3-

6 years, 6-11 years, and >11 years from the FR2004 primary dealer statistics published by the

Federal Reserve Bank of New York. We then normalize each of these by the total assets of primary

dealers, and plot them with the relative yield index at the 2-year, 5-year, 10-year, and 20-year

maturities. The bond position and relative yield index are plotted on different axes (because they

are not in comparable units), with the zero points on each axis aligned.

For a variety of reasons, we do not expect these series to perfectly align. First, as discussed

above, the mapping between how close a yield is to the net long or net short curves and the pre-

dicted net dealer position in that maturity is unclear, and may change over time. Second, the

arbitrage bounds we construct are motivated by trading strategies that (at least potentially) hold the

bond almost to maturity. Dealers also intermediate bonds between clients, and may be willing to

buy a bond for the purpose of selling it quickly even if they view the bond as overpriced (close to

the net short yield). This kind of intermediation activity acts as a kind of noise in the relationship

between net dealer positions and the relative yield index, and is likely accentuated when looking

at specific maturity buckets as opposed to overall net dealer positions. Despite these caveats, there

is a non-trivial correspondence between the relative yield index and actual positions, as shown in

Figure 12. We also construct a weighted average version of the relative yield index, where the

weight for each maturity is the fraction of dealer Treasury bond holding at that maturity over total

dealer Treasury bond holding. Then we plot this aggregate relative yield index together with total

dealer Treasury holding scaled by dealer balance sheet size, as shown in Figure 13.

Summarizing our analysis thus far, Treasury yields have moved from being close to net short

arbitrage bounds pre-GFC to being close to net long arbitrage bounds post-GFC, and net primary

dealer positions have responded by switching from being net short to net long. Strikingly, the net
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short and net long curves are constructed by assuming that dealers will remain net short or long

going forward. Our results therefore imply that, pre-GFC, dealers were expected by the market to

maintain a net short position, and that following the GFC, this expectation flipped and the market

now anticipates dealers maintaining a net long position going forward. The relationship between

yields and positions we document is consistent with the view that balance-sheet-constrained dealers

act as arbitrageurs between the Treasury and swap markets.16 We next consider the implications

of this perspective, with an emphasis on the causes and consequences of the regime shift we have

documented.

3 A Model of the Treasury Market

Thus far, we have been silent on how the Treasury regime is endogenously determined. In this

section, we build a supply-and-demand model to endogenize dealers’ net position, as a function of

their balance sheet constraint, demand for Treasury bonds from non-dealers, and the overall supply

of Treasury bonds. This model helps explain the change in the Treasury regime pre- and post-GFC,

the striking correlation between the slope of the yield curve and the dealer position in Figure 2,

and fragility of the Treasury market when dealers’ balance sheet constraints are tight.

3.1 Model Setup

The model has two dates (zero and one), and a single n-period Treasury bond. Date one exists only

for the purpose of determining payoffs; all of our analysis will focus on date zero, and we will

omit time subscripts for all date zero rates and yields. We will take as exogenous the date zero log

interest rates ybill , rtri, rsec, and rois, as well as two different expectations concerned future bond

prices. We define the dealer’s date zero risk-neutral (Q-measure) expectation of date one bond

prices as

pQ ≡ exp(−(n−1)yQ)≡ EQ[exp(−(n−1)yn−1,1)]

= EQ[exp(−(n−1)rois
n−1,1 +(n−1)(rois

n−1,1 − yn−1,1))]
(25)

16We interpret our results as showing that Treasury yields are often at or near arbitrage bounds given swap prices.
However, one could equally say that swap yields are at or near arbitrage bounds given Treasury yields, adopting the
perspective of Hanson, Malkhozov, and Venter (2022).
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where rois
n−1,1 and yn−1,1 denote the (n− 1)-period OIS swap rates and Treasury bond yields at

date one, and yQ denotes the risk-neutral expectation-implied yield at date zero. We define the

corresponding physical measure (P) counterpart as yP, so the physical-measure expected future

bond price is exp(−(n−1)yP).

We have written the definition of yQ in this way to highlight the possible interpretations of com-

parative statics with respect to yQ. One interpretation, which we emphasize, is that a decrease in

yQ represents a change the OIS curve holding constant the risk-neutral expectation of future swap-

Treasury spreads. An equally valid interpretation is as a change in the risk-neutral expectation of

future swap-Treasury spreads holding the OIS swap curve constant. It is important to distinguish

between comparative statics that hold yP constant and comparative statics that change both yP and

yQ. The first of these represents a change in risk premia, that latter a change in expected future

rates.

These interest rates and expected bond prices will allow us to compute the dealer’s net short

and net long curves. The key endogenous variables are y, the yield of an n-period zero-coupon

bond at date zero, and rsyn, the one-period synthetic unsecured risk-free rate at date zero. We focus

on the following asset prices that are closely related to the empirical motivations in Figure 1.

• The Treasury term spread, y− ybill .

• The synthetic–OIS spread, rsyn − rois, which maps to CIP deviations.

• The n-period swap spread rois
n − y, where rois

n is the date-zero n-period OIS rate,

exp(−nrois
n )≡ EQ[exp(−rois − (n−1)rois

n−1,1)] (26)

• The OIS term spread, rois
n − rois, which contains both an expectation component and a risk

premium component.

We will treat dealers and their levered clients as a single consolidated entity, based on the

analysis of Internet Appendix Section A. In the Treasury market, dealers will interact with two

kinds of investors. Hedged investors purchase the Treasury bond and swap it to their local currency.

Unhedged investors choose between the Treasury bond and Treasury bills. Dealers also have other

counterparties in the synthetic lending market; these other counterparties do not participate in the
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Treasury market. This structure implicitly assumes that the tri-party repo, bill, and interest rate

swap markets are infinitely elastic, whereas the Treasury and synthetic borrowing markets are

elastic but not infinitely so; we make these assumptions to simplify our exposition.

Our model of dealers is exactly that of section 2.1, with pQ defined as in (25). Recall that qsyn

is the quantity (in dollars) of synthetic loans supplied by the dealers at date zero, and qbond be the

quantity (in dollars) of bonds owned (positive) or short-sold (negative), and that the dealer balance

sheet constraint is qsyn + |qbond|= q̄.

Let Sbond be the supply of bonds (in notional quantities) at date zero, and let Dbond
U and Dbond

H

be the demand (in dollars) for bonds from unhedged and hedged investors, respectively. Market

clearing in the bond market requires

qbond +Dbond
U +Dbond

H = exp(−ny)Sbond. (27)

The bond price exp(−ny) enters this expression to convert the notional supply Sbond into dollars.

Unhedged investor demand is a continuously differentiable, strictly positive and increasing

function of the expected log excess return of the bond over bills,17

Dbond
U = DU(ny− ybill − (n−1)yP). (28)

Likewise, hedged investor demand is a continuously differentiable, strictly positive and increasing

function of the expected log excess return in dollars18 on the hedged strategy:

Dbond
H = DH(ny− rsyn − (n−1)yP). (29)

When a dealer helps a hedged investor exchange e.g. yen into dollars and hedge using forwards, the

dealer will end up with a yen asset (cash) and a dollar liability. As a result, this activity increases

the dealer’s balance sheet, and is functionally equivalent, from the dealer’s perspective, to lending

synthetic dollars.

Dealers can also lend synthetic dollars to other counterparties (hedged investors buying cor-

17As documented in Haddad and Sraer (2020), typical bank portfolios behave like unhedged investors in our model
in that their position in long-term bonds is increasing the expected excess return of long-term Treasury bonds.

18For simplicity, we use the hedged return in dollars, as opposed to in local currency; this allows us to ignore
second-order terms associated with the covariance between interest rates and exchange rates.
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porate bonds, for example). We assume that the demands of these other investors for synthetic

dollars are Dsyn(rsyn − rois), where Dsyn is a continuously differentiable, non-negative and strictly

decreasing function of the spread between synthetic dollars and risk-free rates. Market clearing in

the synthetic dollar market requires that

qsyn = Dbond
H +Dsyn(rsyn − rois). (30)

These market clearing conditions, together with the net long and net short inequalities in our

simple model (equations (3) and (4)) and the associated implications for dealer positions, define

our model.

To guarantee that an equilibrium exists in our model, we need interior solutions for (y,rsyn) to

satisfy the two market clearing conditions in (27) and (30). Thus, we make the following technical

assumptions.

Assumption 1. We assume that the demand functions are well-behaved:

• Excess synthetic loan demand is possible: Dsyn(0)> q̄.

• Excess synthetic loan supply is possible: For all y, limrsyn−→∞ Dsyn(rsyn − rois)+DH(ny−
rsyn − (n−1)yP) = 0.

• Excess bond supply is possible: limy−→−∞ DU(ny− ybill − (n−1)yP)+DH(ny− rois − (n−
1)yP) = 0.

Note that excess bond demand is also possible without the need to impose additional assump-

tions. This is because if we take y → ∞, the right hand side of (27) becomes zero while the left

hand side is strictly positive, causing an excess bond demand. We will show that with Assumption

1, the equilibrium solution to the model exists and is unique.

Depending on the sign of qbond , our static model features three possible kinds of equilibria,

which we refer to as regimes: a long regime qbond > 0, a short regime qbond < 0, and an interme-

diate regime qbond = 0. We discuss each of these regimes in turn.

Our focus, when analyzing these regimes, will be on the spread between synthetic dollars and

the OIS rate, rsyn−rois, which is endogenously determined. In our quantitative analysis, this spread

was a key input to the model, and we measured it with CIP violations. In this two-market market,
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the rate rsyn should be understood as the risk-free return the dealer requires for assets held on

balance sheet, as opposed to specifically a euro rate swapped to dollars. Under this interpretation,

the spread rsyn − rois is the kind of financial intermediation spread that plays a key role in macro-

finance models (Brunnermeier and Pedersen, 2009; He and Krishnamurthy, 2013; Brunnermeier

and Sannikov, 2014; Gertler and Kiyotaki, 2010). For this reason, we emphasize how this financial

intermediation spread responds to shocks.

3.2 The Long Regime

We first consider a regime in which dealers are long (qbond > 0), in which case e−ny = e−nyl
, where

the net-long yield yl is defined in (3) and pQ can be expressed in terms of yQ as in (25). Thus,

e−ny =
e−(n−1)yQ

(1−h)(ertri − erois
)+ ersyn . (31)

Equation (31) generates a dealer indifference condition between the two endogenous variables rsyn

and y. This indifference condition suggests that rsyn strictly increases with y. Intuitively, the more

attractive it is to buy the Treasury bond and hedge with swaps (higher y), the higher the return on

synthetic lending (rsyn) must be to generate indifference between these two activities.

Combining the market clearing conditions in (27) and (30), the intermediary balance sheet

constraint in (1), and using qbond > 0, we have

q̄− e−nySbond +DU(ny− ybill − (n−1)yP) = Dsyn(rsyn − rois). (32)

The left-hand side of (32) represents the residual balance sheet available for synthetic lending,

which in equilibrium must equal the residual demand for synthetic lending. Note that the demand

from hedged investors does not appear in this equation, because the dealer balance sheet is unaf-

fected by changes in their demand, holding all else constant.19 The left-hand side of (32) is strictly

increasing in y, while the right-hand side is strictly decreasing in rsyn. Therefore, equation (32)

generates a kind of market indifference condition, where rsyn strictly decreases with y. Intuitively,

19An increase in hedged investor demand reduces the quantity of Treasury bonds dealers must hold, but increases
the amount of synthetic borrowing they must finance, and hence has no effect on their balance sheet usage, provided
that dealers have a net long bond position.
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higher yields lead to more investor demand for bonds, which reduces the balance sheet dealers

allocate to bonds, thereby increasing the balance sheet allocated to synthetic dollar lending and

reducing the synthetic dollar lending spread.

A long-regime equilibrium (y,rsyn) is a point where these two indifference curves intersect and

qbond > 0, which requires

DH(ny− rsyn − (n−1)yP)+DU(ny− ybill − (n−1)yP)< e−nySbond. (33)

Because the two indifference curves have opposite slopes, such an equilibrium is unique if it exists.

We next consider various comparative statics associated with a long-regime equilibrium: an

increase in bond supply (Sbond), dealer balance sheet (q̄), an increase in unhedged bond demand (a

parallel increase in DU ), an increase in hedged bond demand (a parallel increase in DH), an increase

in the swap market term premium (an increase in yQ holding yP constant), and an increase in

expected future rates (a parallel increase in both yQ and yP). The following proposition summarizes

our results.

Proposition 1. In a long regime equilibrium, holding all else constant,

1. An increase in Sbond leads to an increase in y and an increase in rsyn,

2. A decrease in q̄ or a parallel decrease in DU is equivalent to a expansion of the same size in

the dollar supply of bonds.

3. A parallel increase in DH does not change either y or rsyn,

4. An increase in yQ leads to an increase in y and a decrease in rsyn,

5. An increase of dy in both yQ and yP leads to an increase in y of less than n−1
n dy and a

decrease in rsyn.

6. A parallel increase in Dsyn(·) increases both y and rsyn.

Proof. See Internet Appendix Section F.1.

An increase in bond supply means that, holding yields constant, less dealer balance sheet is

available for synthetic lending. As a result, the market indifference curve increases for each y,
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which leads to an increase in both synthetic lending spreads and bond yields in equilibrium. A

decrease in either dealer balance sheet capacity or in unhedged bond demand is equivalent to an

increase in the supply of bonds, and hence generates the same comparative statics. In contrast, an

increase in hedged demand has no effect on the equilibrium, because this demand has no net effect

on dealer balance sheet constraints; it merely transforms dealer bond holdings into dealer synthetic

lending.

An increase in yQ holding yP constant is equivalent to an increase in forward swap rates holding

expected future swap rates constant, and hence to an increase the swap term premium. Such a

change makes owning the Treasury bond and hedging with swaps less attractive to dealers, and as

a result the dealer indifference curve decreases for each y. This in turn leads to an increase in y and

a decrease in rsyn.

An increase of dy in both yQ and yP represents an increase in expected future rates holding the

swap term premium constant. Holding fixed the dollar supply of bonds, such a change would have

no effect on rsyn and would lead to an increase in y of n−1
n dy. However, because it is the notional

and not dollar supply of bonds that is held constant, an increase in yields generates a contraction in

the dollar supply of bonds. This contraction, in the long regime, has the effect of reducing synthetic

lending spreads and dampening the increase in bond yields.

The two indifference curves derived from (31) and (32), and the first and fourth comparative

statics in Proposition 1 are illustrated in Figure 14. The market indifference curves are truncated

when yields are sufficiently high; this truncation highlights that the long regime equilibrium ceases

to exist when client demand exceeds the bond supply.

3.3 The Short Regime

We next consider a regime in which dealers are short (qbond < 0). In this regime, the bond yield

must exactly equal to the net short yield, e−ny = e−nys
, where the short yield ys is defined in (4).

Expressing pQ with yQ as in (25), we obtain

e−ny =
e−(n−1)yQ

ersec
+ erois − ersyn (34)

Equation (34) generates a dealer indifference condition, where rsyn strictly decreases with y. Intu-

itively, the less attractive it is to sell the Treasury bond and hedge with swaps (higher y), the lower
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the return on synthetic lending (rsyn) must be to generate indifference between these two activities.

This relationship has the opposite sign compared to the long regime.

Combining the market clearing conditions in (27) and (30), balance sheet constraint (1), and

using qbond < 0, we obtain

q̄+e−nySbond −DU(ny−ybill − (n−1)yP)−2DH(ny− rsyn− (n−1)yP) = Dsyn(rsyn− rois). (35)

The left-hand side of (35) again represents the residual balance sheet available for synthetic lend-

ing, which in equilibrium must equal the residual demand for synthetic lending. Note that demand

from hedged investors has a double impact on the dealer’s balance sheet. All else equal, an increase

in this demand will result in dealers taking larger short positions and providing more synthetic fi-

nancing to hedged investors, both of which use up dealer balance sheet.

The left-hand side of (35) is strictly decreasing in y: unlike the long regime, more demand

from investors and less supply require dealers to take larger short positions, using up more balance

sheet. Equation (35) therefore generates a kind of market indifference condition, where rsyn strictly

increases in y.

A short-regime equilibrium (y,rsyn) is a point where these two indifference curves intersect and

qbond < 0, which requires

DH(ny− rsyn − (n−1)yP)+DU(ny− ybill − (n−1)yP)> e−nySbond. (36)

Because the two indifference curves have opposite slopes, such an equilibrium is again unique if it

exists.

Our next proposition considers the same set of comparative statics studied previously in the

context of the short regime.

Proposition 2. In a short regime equilibrium, holding all else constant,

1. An increase in Sbond leads to an increase in y and a decrease in rsyn;

2. An increase in q̄ or a parallel decrease in DU is equivalent to an expansion of the same size

in the dollar supply of bonds;

3. A parallel increase in DH leads to a decrease in y and an increase in rsyn;
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4. An increase in yQ leads to an increase in y and an increase in rsyn;

5. An increase of dy in both yQ and yP leads to an increase in y by less than n−1
n dy and an

increase in rsyn.

6. A parallel increase in Dsyn(·) increases rsyn and decreases y.

Proof. See Internet Appendix Section F.2.

An increase in bond supply in the short regime increases yields (like the long regime) but

decreases synthetic lending spreads (unlike the long regime). In the short regime, the larger the

supply of bonds the smaller the dealer’s required short position, and hence more balance sheet is

available for synthetic lending.

Like the long regime, a decrease in unhedged bond demand is equivalent to an increase in bond

supply. Unlike the long regime, an increase in dealer balance sheet capacity is equivalent to an

increase in supply, because dealers are short bonds instead of being long bonds. Also unlike the

long regime, an increase in hedged bond demand leads to a decrease in yields and an increase in

synthetic lending spreads; it is equivalent to a contraction in the dollar supply of bonds of twice

the magnitude of the demand increase.

An increase in the swap curve term premium makes shorting bonds and hedging with swaps

more attractive. The dealer therefore requires a higher synthetic lending spread to be indifferent

between synthetic lending and shorting Treasury bonds, which leads in equilibrium to higher yields

and higher synthetic lending spreads (the opposite of the long regime).

Figure 15 illustrates the dealer indifference curve (34), the market indifference curve (35), and

the first and fourth comparative statics discussed in Proposition 2.

3.4 The Intermediate Regime

The last regime we consider is one in which qbond = 0.20 In this regime, the yield must fall between

the net short and net long yields,

ys ≤ y ≤ yl, (37)
20In position data, dealers will never have an exactly zero net Treasury position, for reasons (for example, interme-

diation activities) that are outside the scope of our model. We view the intermediate regime as describing a situation
in which dealers are targeting a roughly net flat position.
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the bond market must clear without dealers taking a position,

DH(ny− rsyn − (n−1)yP)+DU(ny− ybill − (n−1)yP) = e−nySbond, (38)

and the dealer balance sheet constraint is reduced to qsyn = q̄. Equating qsyn with synthetic lending

demand, we obtain

q̄ = DH(ny− rsyn − (n−1)yP)+Dsyn(rsyn − rois). (39)

The following proposition summarizes the comparative statics in this case. We restrict attention

to interior intermediate equilibria, for which ys < y < yl , and discuss the determinants of regime

boundaries below.

Proposition 3. If an interior intermediate regime exists, it is the only such equilibrium. In an

interior intermediate regime equilibrium, holding all else constant,

1. An increase in Sbond leads to an increase in y and an increase in rsyn;

2. An increase in q̄ or a parallel increase in DU leads to a decrease in both y and rsyn;

3. A parallel increase in DH leads to a decrease in y and an increase in rsyn;

4. An increase in yQ leaves both y and rsyn unchanged;

5. An increase of dy in both yQ and yP leads to an increase in y by less than n−1
n dy and a

decrease in rsyn.

6. A parallel increase in Dsyn(·) increases both rsyn and y.

Proof. See Internet Appendix Section F.3.

When dealers are not active in the Treasury market, increases in supply lead to higher yields

as a consequence of clients demanding higher expected returns in exchange for holding larger

positions. Some of these clients are hedged clients, whose increase position size requires additional

synthetic dollar financing from dealers, reducing those dealer’s ability to lend to other synthetic

dollar clients, which results in increasing synthetic lending rates.
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As usual, an increase in unhedged demand is equivalent to a decrease in supply. However, the

comparative statics with respect to balance sheet and hedged demand are unlike either the long or

short regime; both effects are driven by the role of the hedged demand in the Treasury market.

Unlike either the long or the short regime, in the intermediate regime the OIS term premium

is disconnected from Treasury yields. Dealers are not actively arbitraging bonds and swaps, and

neither type of client trades swaps; as a result, changes in the swap market term premium do not

affect the Treasury market. In contrast, increases in expected yields lead to higher yields, exactly

as in both the long and the short regime.

3.5 Equilibrium

Let us next consider the factors that determine which of three regimes occur in equilibrium. The

following proposition summarizes how some of the comparative statics discussed thus far can

change the equilibrium regime.

Proposition 4. The equilibrium exists and is unique given the exogenous parameters. Holding all

else constant,

1. There exists an 0≤ SS ≤ SB ≤∞ such that a short regime equilibrium exists for all Sbond < SS,

a long regime equilibrium exists for all Sbond > SB, and an intermediate regime equilibrium

exists for Sbond ∈ [SS,SB].

2. There exists an 0 ≤ yQ,S ≤ yQ,B ≤ ∞ such that a short regime equilibrium exists for all

yQ < yQ,S, a long regime equilibrium exists for all yQ > yQ,B, and an intermediate regime

equilibrium exists for yQ ∈ [yQ,S,yQ,B].

Proof. See Internet Appendix Section F.4.

Intuitively, when bonds are scarce, dealers will be short to meet client demands, while when

bonds are abundant dealers will be long to fill the shortfall in client demand.

Less intuitively, when the yield curve is steep dealers will be short bonds. Considering the

dealer’s bond position in isolation, this looks like a money-losing strategy: expected returns are

higher when the yield curve is steeper. However, if the swap curve has a higher term premium

than the Treasury curve and the dealer is hedging with swaps, then selling bonds and hedging is in
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fact a profitable strategy. Similarly, buying bonds when the curve is flat looks like a money-losing

strategy, but is in fact profitable if the swap curve is even flatter and the dealer hedges. In our

model, client demand for Treasury bonds is driven by the expected returns on those bonds; spreads

must therefore move in a way that induces dealers to take the opposite position.

Figure 16 illustrates the comparative statics of the model with respect to changes in the OIS

curve term premium. The swap-Treasury spread and Treasury term premium are both increasing

functions of the swap term premium, but the rate at which they increase depends on the regime. In

contrast, the synthetic lending spread is U-shaped: it is high in both the long and short regimes,

and low in the intermediate regime.

3.6 Model vs. Data

We now return to the motivating facts described in the introduction and discuss them through the

lens of our model. We divide our discussion between the pre-GFC and post-GFC periods. In our

view, there are three key differences between these two periods:

• In the pre-GFC period, dealers were able to use large amounts of leverage; in the post-GFC

period, leverage constraints were tight. The tightening of leverage constraints was part of

regulatory response to the financial crisis, and is discussed by a number of authors, such as

Duffie (2017).21

• In the pre-GFC period, the supply of Treasury bonds was much smaller than in the post-GFC

period. The U.S. government borrowed a large amount during the financial crisis and con-

tinued running substantial deficits in the years that followed. The outstanding of marketable

Treasury securities grew from $4.7 trillion in 2008 to $22.5 trillion as of June 2022.

• In the pre-GFC period, short maturity Treasury yields were significantly lower than tri-party

repo rates, whereas post-GFC, the two rates are similar. We believe this is a consequence of

the Federal Reserve paying interest on excess reserves. In the pre-GFC period, banks were

significant holders of Treasury bills at rates well below tri-party repo rates. After the Fed

began paying interest on reserves at rates higher than tri-party repo rates, banks substantially

21Our model is silent about why dealers do not issue more equity in response to binding leverage constraints. Debt
overhang, as in Andersen et al. (2019), is one possible explanation.
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reduced their bill ownership, and government-only money market funds substantially in-

creased their bill ownership. Such funds can invest in both bills and tri-party repo; as result,

bill yields rose to roughly the level of tri-party repo rates.

There are of course many other differences between the pre- and post-GFC periods. There are also

relevant factors in the model (in particular, the shape of the demand curves of clients) that may

have changed between these period and about which we have little information. However, we will

show using the comparative statics just described that these three facts can explain the stylized

facts discussed in the introduction.

To illustrate this point, in Figure 17, we replicate Figure 16, with a much higher balance sheet

capacity for dealers, large spreads between bill and tri-party repo rates, and a relatively small

supply of Treasury bonds, as a way of capturing the pre-GFC period.

In Figure 17, the equilibrium involves dealers taking a short bond position given a positive OIS

term premium. This result is driven primarily by low Treasury supply, which leads (all else equal)

to excess client demand. Because balance sheet capacity is large, synthetic dollar lending spreads

are small, and there is little relationship between these spreads and swap-Treasury spreads. All of

this is consistent with the evidence shown in Figure 1 for the pre-GFC period.

Moreover, the model predicts a large, positive swap-Treasury spread in this environment, for

two reasons. First, as a consequence of dealers taking short positions, dealers will borrow at se-

cured lending rates, which are low even relative to repo rates, and therefore require particularly low

Treasury yields to justify their short position. Second, because short maturity Treasury yields are

substantially below tri-party rates, which are themselves below OIS rates, expectations of date one

short-maturity swap spreads are high, which has the effect of increasing date zero swap spreads.

Let us now consider instead the post-GFC period. In this period, Treasury bond supply is high,

balance sheet constraints are tight, and short maturity Treasury yields are close to tri-party repo

rates. We again replicate Figure 16 in Figure 18, but with a low balance sheet capacity for dealers,

no spread between bill and tri-party repo rates, and a relatively large supply of Treasury bonds, as

a way of capturing the post-GFC period.

In Figure 18, the equilibrium involves dealers taking a long bond position for realistic levels

of the OIS term premium, a result driven primarily by the large Treasury supply. Because balance

sheet capacity is constrained, synthetic dollar lending spreads can be large and are negatively
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correlated with both swap-Treasury spreads and the slope of the OIS term structure.22 This is

consistent with the evidence shown in Figures 1 and 2 for the post-GFC period.23

Moreover, the model now predicts negative swap spreads during periods in which OIS term

structure is flat, again consistent with the post-GFC behavior of swap spreads. This result comes

about for several reasons. First, because dealers are long as opposed to short, the relevant financing

rate is the tri-party repo rate as opposed to the security lending rate, and hence higher. This results

in a higher bond yield, all else equal. However, the tri-party repo rate is still below OIS rates,

and as a result the swap spread will be positive when synthetic lending spreads and dealer bond

positions are small. But when synthetic lending spreads and dealer bond positions are large, the

additional opportunity cost of forgone synthetic lending will be capitalized into the bond price,

resulting in bond yields that exceed swap rates (i.e. negative swap spreads).

3.7 Regimes and Treasury Market Fragility

During the financial crisis of 2008-2009, Treasury yields fell by more than matched maturity OIS

swap rates. During the COVID-induced financial turmoil of March 2020, the reverse was true:

Treasury yields did not fall by as much as OIS swap rates, and in fact briefly rose (Duffie, 2020;

Haddad, Moreira, and Muir, 2021; He, Nagel, and Song, 2022). The different comparative statics

across the long and short regimes in our model offer an explanation for this pattern.

In the short regime, an increase in balance sheet costs (as measured by the spread rsyn − rois),

all else equal, will lead to lower Treasury yields. In contrast, in the long regime, an increase in

balance sheet costs will lead, again all else equal, to higher Treasury yields. Both crises were

characterized by large increases in arbitrage spreads; the difference was that the market was in the

short regime pre-GFC and in the long regime post-GFC.

He, Nagel, and Song (2022) attribute the differences between these two episodes to client

demand for Treasury bonds (a dash-for-cash in COVID, a flight-to-safety in the GFC). Our story is

compatible with theirs, in the sense that Treasury selling in COVID would increase balance sheet

costs (the long regime) and Treasury buying in the GFC would also increase balance sheet costs
22Here are assuming that the slope of the OIS term structure reflects a mix of term premium and expectations shocks.
23That the evidence is consistent with Figure 2 can be inferred from Figure 18 by observing that the synthetic

lending spread and Treasury term spread are negatively correlated. This result implies, via the dealers’ balance sheet
constraint and the demand curve for synthetic lending, that the dealers’ Treasury position is decreasing in the Treasury
yield curve slope.

36

Electronic copy available at: https://ssrn.com/abstract=4150025



(the short regime). However, our story does not rely customer demand for Treasury bonds as the

causal factor behind the increase in balance sheet costs. In both the GFC and COVID episodes,

even if clients had not bought or sold Treasury bonds on net, we expect that balance sheet costs

would have risen, and as a result predict that Treasury yields would have moved relative to swap

rates upwards in COVID but downwards in the GFC. Quantifying the role of Treasury demand, as

opposed to other forces, in explaining the tightening of balance sheet constraints in these episodes

is an interesting direction for future research.

4 Implications for Policy

In this section we consider a variety of Federal Reserve policies, and study how the effects of

those policies depend on the regimes we have identified in the Treasury market. The specific

policies we consider are interest rate policies (including forward guidance), swap lines with other

central banks, supplementary leverage ratio (SLR) exemptions, and quantitative easing/tightening

(QE/QT). We will use the comparative statics described previously to discuss the impacts of each

of these policies. Our analysis will focus on the effects of these policies on Treasury yields and on

synthetic dollar rates, which, as discussed above, we view as a proxy for financial intermediation

spreads more generally.

Our framework treats the term structure of OIS rates as exogenous. We first discuss of the

effects of interest rate policies that changes the level and slope of the OIS curve on Treasury market

dynamics. Then in our analysis of the subsequent three policies (swap lines, SLR exemptions,

QE/QT), we focus our discussion on the direct quantity and balance sheet effects of these policies,

without discussing the additional effects of these policies on the OIS curve and expectations of

future rates (i.e. keeping yQ and yP unchanged in our static model).

Before discussing these policies, we should emphasize that all of these policies have effects

on inflation, real economic activity, and financial stability that are outside the scope of our model.

Policies that increase arbitrage spreads and other financial market distortions can be justified on

these grounds. However, combinations of the policies we discuss might achieve these same ob-

jectives while avoiding financial market distortions, and it is the goal of our analysis to highlight

these possibilities.
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4.1 Interest Rate Policy

We first consider the effects of policies that affect OIS rates and rate expectations, including both

rate hikes and forward guidance. That is, we define interest rate policy as controlling the current

level and future expectations of the federal funds rate (the floating rate for OIS swaps).24 Our

analysis will consider the relationship between shocks to current and future federal funds rates and

shocks to Treasury yields.

The comparative statics of our model distinguish between changes in term premium (changes

in yQ holding yP constant) and changes in expectations (equal changes in both values). Monetary

policy likely changes both expectations and risk premia. Hanson and Stein (2015) and Hanson,

Lucca, and Wright (2021) argue that rate hikes increase both expected future rates and term premia.

There is also evidence that forward guidance affects risk premia in addition to rate expectations

(e.g. Rogers, Scotti, and Wright (2018)).

To avoid taking a stand on the exact decomposition between interest rate policy and risk premia,

we will describe interest rate policy in terms of the level and slope of the OIS swap curve, under

the premise that a steep slope implies a high risk premium and a flat or inverted slope implies a

low risk premium.

A high level of expected rates (a parallel increase in both yQ and yP) is equivalent, in our

model, to a contraction in the dollar supply of bonds, because the supply of bonds is assumed to

fixed in notional terms. This effect is potentially offset by forces outside our model– for example,

the federal government might issue more debt to cover the additional interest costs associated with

high rates. For this reason, we do not emphasize it as the main effect.

Instead, we focus on the slope of the term structure and the term premium. A low term premium

in our model in the long regime leads to a contraction in the client demand for Treasury bonds,

a further build-up in the dealer’s long position, an increase in bond yields, more negative swap

spreads, and an increase in synthetic lending spreads (see part four of Proposition 1 or Figure 18).

In the short regime, a low term premium instead leads to a decline in synthetic lending spreads (see

part four of Proposition 2).

24This sidesteps the issue of how administered rates (such as the interest on reserves rate and ONRRP rates) transmit
to the federal funds market, which is beyond the scope of our model.
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4.2 Central Bank Swap Lines

We next consider the policy of establishing swap lines between the Federal Reserve and other

central banks. These swap lines allow foreign central banks to borrow dollars from the Federal

Reserve, using their own currency as collateral. The foreign central banks then lend those dollars

to their local banks, typically for the purpose of financing a position in dollar-denominated assets.

This procedure allows non-U.S. banks to borrow dollars, and is a substitute for borrowing syn-

thetic dollars via a dealer.25 We therefore incorporate swap lines into our static model as equivalent

to a demand shift in the synthetic lending market (a parallel shift in Dsyn). The swap lines establish

by the Federal Reserve generally have rates determined by policy. If the rate is higher than the

prevailing market rate, the facility will go unused, and the equivalent demand shift is zero. If the

rate is appealing, it is equivalent to a rate ceiling in the synthetic loan market, and hence to an

endogenously sized decrease in the demand for synthetic dollars.26

Any demand decrease in the synthetic lending market will lead to reduced synthetic lending

spreads in both the long and short regimes (see part six of Propositions 1 and 2). In the long

regime, these reduced lending spreads will also lead to reduced Treasury yields (and hence swap

spreads), whereas in the short regime reduced lending spreads would lead to increased Treasury

yields. Again, both of these effects operate through the relaxation of balance sheet constraints, and

the regime determines the relationship between balance sheet tightness and Treasury yields. In

both cases, there would be an increase in the demand for Treasury bond financing (either tri-party

repo or security lending). Our model assumes these rates are fixed, but in a more complex model

these rates might also adjust.

We should note that, in our model, a swap line with a rate equal to the OIS rate and large

capacity could drive the synthetic lending spread to zero. This would endogenously result in all

of the dealer’s balance sheet being allocated to the Treasury trade, and violate Assumption 1.

Although we do not formally analyze this case, we should emphasize what does not happen: it is

not the case that the balance sheet cost faced by dealers goes to zero. Instead, the CIP violation

25We are assuming that dealers are not themselves borrowing using the swap lines; providing subsidized dollar
funding to dealers would have additional effects not described in this section.

26During normal times, because of stigma associated with tapping central bank liquidity facility and moral suasion
from central banks discouraging banks to use swap line to fulfill their routine funding needs, the take-up in the swap
line is extremely low even when the swap line rate borrowing rate is temporarily below the implied dollar rate from
the FX swap market.
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ceases to be a meaningful measure of balance sheet costs. Other financial intermediation spreads

would decline (due to the relaxation of dealer balance sheet constraints), but would not go to zero.

Summarizing, in both regimes, swap lines can substitute for dealer balance sheet in the syn-

thetic dollar market, thereby reducing synthetic lending spreads. However, swaps lines have op-

posite effects on Treasury yields in different regimes: they decrease Treasury yields in the long

regime, but increase Treasury yields in the short regime.

4.3 Leverage Ratio Exemptions

We next consider changes to regulatory policy that involve exempting certain kinds of low-risk as-

sets from the SLR calculation. We consider two possible exemptions: exempting Treasury bonds

and repo loans against Treasury collateral (exempting Treasurys, for short), and exempting re-

serves. Similar policies were implemented during the most acute parts of the COVID-induced

market disruptions in 2020.

Recall in our static model that we have consolidated dealers and their levered clients into a

single entity, based on the analysis of Internet Appendix Section A. This consolidation is based on

the fact that both repo loans that dealer provide to their levered clients to hold Treasury bonds and

direct holdings of Treasury bonds increase the size of the dealer’s balance sheet. For this reason, it

is simpler to consider a policy that exempts both repo loans against Treasury bonds and Treasury

bonds directly owned by dealers.27

Exempting Treasurys will both free up dealer balance sheet capacity for synthetic lending and

remove the need to reduce CIP arbitrage activity when taking a net position in Treasury bonds.

This will lead to Treasury yields that are a function only of financing rates (rtri in the long regime,

rsec in the short regime), and therefore have the effect of reducing yields in the long regime and

increasing yields in the short regime. In both regimes, the SLR exemption will allow dealers to

allocate the regulated portion of their balance sheet entirely to synthetic lending (qsyn = q̄) and lead

to a reducing in financial intermediation spreads.

Exempting reserves (or any other assets) frees up the dealer balance sheet space for Treasury

holding and synthetic lending, and thus is equivalent to expanding the balance sheet capacity q̄ in

our static model. In the long regime, this would result in a decline in bond yields and synthetic
27Exempting one but not the other would shift the net holdings of Treasury bonds from dealers to their levered

clients or vice versa, in addition to relaxing balance sheet constraints.
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lending spreads; in the short regime, bond yields would rise while synthetic lending spreads fall

(see part two of Propositions 1 and 2).

Both SLR exemption policies will lead to a reduction in financial intermediation spreads, whose

magnitude depends on the extent to which balance sheet constraints are relaxed. Exempting Trea-

surys will, in the long regime, reduce Treasury yields by removing balance sheet factors from their

pricing entirely, whereas exempting reserves will not have this effect.

4.4 Quantitative Easing and Quantitative Tightening

We define QE (QT) as the Federal Reserve’s purchases (or sales/redemptions) of Treasury bonds in

the secondary market.28 The Treasury bonds can ultimately come from (QE) or go to (QT) dealer

inventory, bank portfolios (outside the broker-dealer subsidiary), or other non-bank (non-dealer)

clients, and are traded in exchange for reserves. Here, we will separately consider the Treasury

demand and reserve supply channels of QE/QT. We assume that no SLR exemption is applied to

reserves or Treasury securities, and set aside the signaling effects of QE (which are covered in

Section 4.1).

To isolate the effects of the Treasury demand channel, we consider a hypothetical version

of QE in which the Fed purchases Treasury bonds in exchange for Treasury bills. This operation

(which is somewhat akin to “Operation Twist”) leaves the supply of reserves unchanged. We model

this operation, which isolates the Treasury demand channel of QE, as a parallel outward shift in

the demand curve for Treasury bonds (DU ) in our static model. Holding fixed money market

yields and swap rates, in the long regime quantitative easing will reduce both yields and synthetic

lending spreads (see part two of Proposition 1). In contrast, in the short regime, quantitative

easing will reduce yields while increasing synthetic lending spreads (see part two of Proposition

2). Both of these effects operate through the balance sheet mechanism; the regime matters because

it determines whether balance sheet constraints are tightened or loosened by QE. If the goal of

quantitative easing is to lower financial intermediation spreads, then our results imply that QE is

effective via the Treasury demand channel in the long regime but not in the short regime.

To isolate the reserve supply channel, we consider a hypothetical purchase of Treasury bills

28The Federal Reserve and other central banks have at times purchases mortgage, corporate, and other bonds as part
of quantitative easing programs. The model described thus far considers only Treasury bonds, and for this reason we
restrict attention to Treasury purchases.
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in exchange for reserves, which leaves the supply of longer-maturity Treasury bonds unchanged.

Note that the combination of these two operations is QE: the purchase of Treasury bonds in ex-

change for reserves. Note also that the effects of QT are exactly the opposite of those of QE. The

effects of QE through the reserve supply channel are more complex, and depend in particular on

whether the Fed’s overnight reverse repo (ONRRP) facility is actively used.

Consider first the case without an active ONRRP facility. In this case, the reserves the Fed

creates via QE must end up on bank balance sheets.29 This will be true regardless of whether the

ultimate seller of the bonds to the Fed is a bank, dealer, or non-bank. We can incorporate this effect

into our model as a reduction in q̄.

Suppose the reduction in balance sheet capacity is equal to the increase in bond demand (i.e.

that all reserves end up on bank balance sheets). In the long regime, the reserve supply channel

(q̄) will exactly offset the Treasury demand channel (DU(·)); see (32). In contrast, in the short

regime, both the reserve supply channel and the Treasury demand channel will lead to more tightly

constrained dealer balance sheets (see (35)).

With an actively used ONRRP facility, the reserve supply channel will have no effect. The

ONRRP facility allow money market funds to make repo loans to the Federal Reserve. If the Fed

exchanges reserves for bills, these funds will sell bills and receive deposits at their clearing banks,

and then lend those deposits back to the Federal Reserve using the ONRRP facility. Thus, with an

active ONRRP facility, the effects of QE operate entirely through the Treasury demand channel.

In summary, in the long regime with an active ONRRP facility and binding balance sheet

constraints (the situation as of June 2022), we expect QE/QT to have strong effects on Treasury

yields and financial intermediation spreads.

4.5 Implications Monetary Policy Tightening Cycles

In June 2022, the Federal Reserve began to normalize its large balance sheets from the extraor-

dinary response to the COVID pandemic. In addition, the Fed is also expected to increase rates

substantially over the next two years while engaging in quantitative tightening. Our framework has

important implications for the dynamics of the Treasury market during such a tightening cycle.

29If the Fed’s purchases under QE coincide with Treasury issuance, then some reserves might temporarily go into
the Treasury’s general account before eventually winding up on bank balance sheets.
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We first note that tightening cycles are often associated with with flat or inverted Treasury yield

curve, and low expected returns on long-term Treasury bonds. This dampens real money investors’

demand for Treasury bonds, and it is particularly challenging for dealers and levered investors to

accommodate a reduction in Fed holdings of Treasury bonds (QT) when client demand is weak.

Consider the experience of the 2017-2019 tightening cycle, in which the Fed normalized its

balance sheet for the first time post-GFC and increased the short-term interest rates from the zero-

lower-bound to 2.5 percent. During that tightening cycle, dealers’ increased their Treasury hold-

ings by about $100 billion and hedge funds increased their holdings by about $350 billion, together

accounting for the entirety of the $390 billion Fed balance sheet normalization from October 2017

to September 2019. The swap-Treasury spread and the Treasury cash-futures basis widened con-

siderably over the period. Moreover, the increasingly crowded dealer balance sheet and signifi-

cant build-up of the levered investor positions may have contributed to the repo market distress in

September 2019 and Treasury market dislocation in March 2020.

Consistent with this experience, our model suggests that the combination of QT with an active

ONRRP facility and a flattening curve, in the long regime, can lead to higher yields, more negative

swap spreads, and higher financial intermediation spreads. SLR exemptions and the use of the

swap lines established with foreign central banks have the potential to ameliorate these effects.

5 Conclusion

We have documented a regime change in the U.S. Treasury bond market. Prior to the 2008-2009

financial crisis, dealers were net short-sellers of Treasury bonds, swap spreads were positive, and

CIP violations were small. Following the GFC, dealers became net long Treasury bonds, swap

spreads turned negative, and covered interest parity violations emerged. Our analysis ties these

observations together by constructing arbitrage bounds, the net short and net long curves, and

providing evidence of dealers-as-arbitrageurs in the Treasury market.

We then discuss the causes and consequences of this regime change. We view the large increase

in Treasury supply and the tightening of leverage constraints on dealers as the primary drivers

of this regime change. Using a stylized static model, we have argued that this regime shift has

amplified the effects of quantitative easing and of the yield curve slope on borrowing spreads. In the

post-GFC dealer-long regime our model predicts tighter dealer balance constraints in response to
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Fed quantitative tightening and a flat or inverted Treasury yield curve, and more elevated financial

intermediation spreads. Our analysis suggests that other polices, including the use of swap lines

and of exemptions to SLR calculations, can help offset these effects.
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Figure 1: Primary Dealer Treasury Holing, Swap Spreads, and Cross-Currency Basis.

Notes: This figure plots the spread between the 30-year Libor-linked interest rate swap and the U.S. Treasury
yield (in green), and the 5-year USD-EUR cross-currency basis (in orange), and net holdings of coupon
Treasury bonds. The pricing data are from Bloomberg, and the primary dealer position data are from the
publicly available primary dealer statistics published by the Federal Reserve Bank of New York. The quote
on the cross-currency basis swap effectively measures the direct dollar interest rate minus the synthetic
dollar interest by swapping EUR interest rate into dollars (Du, Tepper, and Verdelhan (2018b)).
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Figure 2: Term Spreads and Primary Dealer Treasury Holdings

(a) Tresaury Term Spread and Dealer Treasury Holding (b) Treasury Term Spread and Dealer Treasury Holding

Notes: Panel (a) plots the yield spread between the 10-year Treasury bond and the 3-month Treasury bill
(in blue), and the primary dealers’ net holdings of Treasury bonds. Panel (b) plots the relationship between
the two variables post-2009 in a scatter plot. The pricing data are from Bloomberg, and the primary dealer
position data are from the publicly available primary dealer statistics published by the Federal Reserve
Bank of New York.

Figure 3: Treasury Supply and Broker-Dealer Total Assets.

Notes: This figure plots the total marketable Treasury securities outstanding (in red) and the financial assets
of the U.S. broker-dealer sector (in blue) in trillions of dollars from Flow of Funds.
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Figure 4: Cash-Flow Illustration for a τ-period Long-Treasury Trade.
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Figure 5: Cash-Flow Illustration for a τ-period Short-Treasury Trade.
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Figure 6: Balance Sheet Change for a Long-Treasury Trade in the Long Regime
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Figure 7: Balance Sheet Change for a Short-Treasury Trade in the Short Regime
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Figure 8: Fit of the TS Model to Dollar OIS Curves.
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Notes: In this figure, we show the fitting of the dollar OIS curve using our term-structure model. Data are
from 2003 to 2021. More details on the term structure model can be found in Section 2.4.
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Figure 9: Fit of the TS Model to USD-EUR CIP Deviations.
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Notes: In this figure, we show the fitting of the OIS-Based EUR-USD CIP Deviations using our term
structure model. The CIP deviations are shown as the spread between the synthetic dollar interest rate and
the USD OIS rate (the negative of the quoted cross-currency basis). Data are from 2003 to 2021. More
details on the term structure model can be found in Section 2.4.
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Figure 10: Long and Short Curves.
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Notes: In this figure, we show the model-implied net-long and net-short curves for Treasury securities,
together with the actual Treasury yields. Data are from 2003 to 2021. All yields are par yields. More details
on the term structure model can be found in Section 2.4.
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Figure 11: Long and Short Curves – OIS Spreads.
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Notes: In this figure, we show the model-implied long and short Treasury curves minus the OIS rates for
corresponding maturities, together with the actual Treasury–OIS spreads. Data are from 2003 to 2021. All
yields are par yields. More details on the term structure model can be found in Section 2.4.
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Figure 12: Relative Yield and Position by Maturity.
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Notes: In this figure, we plot the relative yield index versus actual scaled primary dealer Treasury positions.
The relative yield index is defined as 2*(long curve − Treasury curve)/(long curve − short curve) − 1.
The scaled primary dealer Treasury position is calculated as the ratio of the primary dealer net position in
the Treasury securities for the corresponding maturity bucket (published by Federal Reserve Bank of New
York) to total financial assets of the broker-dealer sector (published by Flows of Funds). The position data
corresponding to 2-year, 5-year, 10-year, and 20-year yields in the figure are defined based on the following
maturity buckets, 1-to-3 years, 3-to-6 years, 6-to-11 years, over 11 years, respectively. Data are from 2003
to 2021.
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Figure 13: Relative Yield and Position in Aggregate.
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Notes: In this figure, we plot the weighted average of the relative yield index across maturities vs. primary
dealer Treasury positions. For each maturity, the relative yield index is defined as 2*(long curve − Treasury
curve)/(long curve − short curve) − 1. Each relative yield is then weighted by coupon Treasury outstanding
for the corresponding buckets over total coupon Treasury securities, based on data from the Center for
Research in Security Prices. The primary dealer Treasury position is the ratio of total primary dealer net
position in all coupon Treasury securities (published by Federal Reserve Bank of New York) to total financial
assets of the broker-dealer sector (published by Flows of Funds). Data are from 2003 to 2021.

Figure 14: Dealer and Market Indifference Curves in the Long Regime.
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Notes: This figure illustrates the dealer indifference curve defined in (31) and the market indifference curve
defined in (32), under three different levels of Sbond and two different levels of yQ. The functional forms and
parameters used to generate the figure are described in Internet Appendix Section D.
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Figure 15: Dealer and Market Indifference Curves in the Short Regime.
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Notes: This figure illustrates the dealer indifference curve defined in (34) and the market indifference curve
defined in (35), under three different levels of Sbond and two different levels of yQ. The functional forms and
parameters used to generate the figure are described in Internet Appendix Section D.

Figure 16: All-Regimes and the OIS Term Premium.
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Notes: This figure plots the synthetic lending spread rsyn − rois, Treasury term spread y− ybill , and swap-
Treasury spread rois

n,0 − y as a function of the swap curve term premium rois
n,0 − rois. The functional forms and

parameters used to generate the figure are described in Internet Appendix Section D.
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Figure 17: All-Regimes with Large Dealer Balance Sheet Capacity and Small Bond Supply.
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Notes: This figure plots the synthetic lending spread rsyn − rois, Treasury term spread y− ybill , and swap-
Treasury spread rois

n,0 − y as a function of the swap curve term premium rois
n,0 − rois, holding expected future

rates fixed, with a relatively large dealer balance sheet capacity, small bond supply, and large spread between
bills and tri-party repo. The functional forms and parameters used to generate the figure are described in
Internet Appendix Section D.

Figure 18: All-Regimes with Small Dealer Balance Sheet Capacity and Large Bond Supply.
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Notes: This figure plots the synthetic lending spread rsyn − rois, Treasury term spread y− ybill , and swap-
Treasury spread rois

n,0 − y as a function of the swap curve term premium rois
n,0 − rois, holding expected future

rates fixed, with a relatively small dealer balance sheet capacity, large bond supply, and zero spread between
bills and tri-party repo. The functional forms and parameters used to generate the figure are described in
Internet Appendix Section D.
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Internet Appendix
"Intermediary Balance Sheets and the Treasury Yield Curve"

Wenxin Du Benjamin Hébert Wenhao Li

A Dealers and Levered Clients

In Section 2, we developed net long and net short curves from the perspective of a securities dealer,

yields at which the dealer would be willing to either net long or net short Treasury bonds. In this

section, we extend our model to consider the perspective of a levered Treasury investor (e.g. a

hedge fund) financed by a security dealer of the kind considered in that section. The main result

is that levered clients will have the same net long and net short curves as the dealer that finances

them. That is, the net long curve represents a yield at which the levered client would be willing

to buy the Treasury bond, irrespective of its beliefs about the stochastic process driving Treasury

yields, and a symmetric result holds for the net short curve. This result occurs in spite of the fact

that the levered client is not itself directly affected by balance sheet constraints.

This result is important from a general equilibrium perspective. Dealers are never on net long

or short a large quantity of Treasury bonds during our sample, relative to the overall Treasury

supply. Dealers moved from a net short of roughly 100 hundred billion in 2005 to a net long of

200 hundred billion in 2020. The overall supply of Treasury securities rose from 4 trillion to 22

trillion over the same period.

However, dealers intermediate repo and reverse-repo for their levered clients in much greater

quantities– on the order of trillions each day. In this section we will argue that the recipients of

much of this financing will act like dealers, and subsequently provide some suggestive evidence

on this point.

Consider the following trading strategy for the dealer: finance a client’s purchase of a Treasury

using bilateral repo, use the resulting collateral to raise financing in the tri-party repo market, and

reduce CIP activity so that the trade is balance sheet neutral. In a competitive market, the profits

of such a strategy are zero:

(1−h)(e
1

12 rbi
t − e

1
12 rtri

t )︸ ︷︷ ︸
Lending/Borrowing Spread

−(1−h)(e
1
12 rsyn

t − e
1

12 rois
t )︸ ︷︷ ︸

Forgone CIP profits

= 0. (A1)
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That is, the dealer must be indifferent between matched book repo lending and taking advantage of

CIP arbitrage, as both activities use balance sheet. Note that this is expressed per dollar of Treasury

collateral, and that we have assumed the same haircut in both markets.

Let’s now consider the perspective of a levered client who can purchase a Treasury bond,

financed by this intermediary, and can trade derivatives with the securities dealer. Because the

levered client can trade derivatives with the dealer, the projection of its stochastic discount factor

onto the space of derivative returns must agree with the same projection for the dealer’s SDF.

Equivalently, the risk-neutral measure Q is shared (within this space) by the levered clients and the

dealer.

We will also assume that the levered client can engage in risk-free unsecured borrowing1 from

the unsecured dealer at the synthetic lending rate. The dealer is unwilling to lend at a rate lower

than this, as otherwise it would be better off engaging in CIP arbitrage.

Under these assumptions, the levered client considers buying an n-month Treasury and then

selling one month later:

(1−h) · e−nyn,t erbi
t︸ ︷︷ ︸

secured financing

+h · e−nyn,t ersyn
t︸ ︷︷ ︸

unsecured financing

≥ EQ
t [e−(n−1)yn−1,t+1 ]. (A2)

Substituting in (A1), this condition becomes identical to (7). It follows immediately that levered

clients must be willing to go net long if the yield reaches the net long curve.

Essentially identical logic applies to the net short curve: the dealers indifference between

matched book repo (in the net short case, intermediating between security lenders and short-sellers)

and CIP arbitrage converts the levered client’s indifference condition to the dealer’s indifference

condition.

We conclude that levered clients who are dependent on dealers for financing will act as if

they face the same balance sheet costs that dealers face, even if they are not themselves directly

regulated. As a result, balance sheets costs will influence a substantial segment of the Treasury

market, even though dealers are on their own hold a relatively small quantity of Treasury bonds on

net.

Below, we provide evidence consistent with this perspective. While the Treasury positions of

1It is probably better to think of this as secured borrowing using non-Treasury securities that the dealer cannot
itself finance in a repo market.
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levered investors are not publicly available, we can infer the holdings of investors that engage in

Treasury cash-future trades from Treasury futures positions. Figure A1 plots the primary dealer

net coupon holdings and levered funds’ short positions in Treasury futures contracts published

by the CTFC. For relative value hedge funds that arbitrage Treasury cash-futures basis, a short

position in Treasury futures corresponds to a long position in the cash Treasury bonds. We see

that primary dealer positions and the levered funds’ short Treasury futures position are strongly

positively correlated, which is consistent with our result that dealers and levered investors take

similar positions and can be considered as a consolidated intermediary.

Figure A1: Primary Dealer Treasury Holdings and Implied Treasury Holding of Levered Investors

Notes: This figure plots the primary dealer’s net position in coupon-bearing Treasury securities from Primary
Dealer Statistics published by the Federal Reserve Bank of New York, and the short position in the Treasury
futures market by levered funds from the Commitments of Traders Report published by the Commodity
Futures Trading Commission.
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B Partial Equilibrium Arbitrage Bounds

In this appendix section, we construct the net short and net long curves described in the main text as

arbitrage bounds under weaker assumptions than those employed in the main text. In particular, in

the main text we assumed that zero-cost, zero-balance sheet trades are weakly unattractive under a

common SDF (i.e., a version of the no-arbitrage assumption). That assumption leads to yn−1,t+1 ≤
yb

n−1,t+1 with probability one. Here, we instead assume that there could be profitable zero-cost,

zero-balance sheet trading strategies under the intermediary’s stochastic discount factor. Then we

consider the question of whether this intermediary is willing to go net long or net short a Treasury

bond, irrespective of the intermediary’s preferences or beliefs about the stochastic process driving

Treasury yields.

We will assume that this intermediary’s SDF prices derivatives, and that the intermediary be-

lieves with probability one that x1,t ≥ rois
t ≥ x2,t , where x1,t and x2,t are defined as in the main text.

We discuss the role of this assumption below.

B.1 The Net Long Curve

Consider first the trade in which the intermediary buys a zero-coupon seven-month Treasury bond,

and then sells it in one month, at which time the Treasury bond becomes a zero-coupon T-bill. The

intermediary can finance this purchase with tri-party repo, up to the standard two percent haircut

h, and finance the remainder with unsecured debt. This trade, in combination with a reduction in

CIP activity, is a balance-sheet neutral, zero-financing trade. The intermediary is therefore willing

to get net long if this strategy is weakly appealing under the SDF that prices derivatives. Let Q
denote the risk-neutral measure associated with this SDF. We assume that rois

t is the log risk-free

rate associated with this SDF.2

Let yb
7,t denote a yield at which this trade is attractive to the dealer, and define yb

6,t = ybill
t . The

2That is, we assume the one-month OIS swap rate is the intermediary’s unsecured borrowing rate. This assumption
is consistent with the empirical observation that the one-month OIS rate closely tracks other unsecured rates, for
example the one-month highly rated financial commercial paper rate. It is also consistent with the industry practice of
using the OIS curve to discount derivative cashflows. Lastly, it is consistent with the observation that the unsecured
borrowing rate is the appropriate discount rate for off-balance-sheet cashflows, under our generalized no-arbitrage
assumption.
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dealer will be indifferent between employing and not employing this trading strategy if

e−
7
12 yb

7,t︸ ︷︷ ︸
Purchase price

( he
1

12 rois
t︸ ︷︷ ︸

Unsecured Financing

+(1−h)e
1

12 rtri
t︸ ︷︷ ︸

Repo Financing

+(e
1
12 rsyn

t − e
1

12 rois
t )︸ ︷︷ ︸

Forgone CIP profits

) = EQ
t [e−

6
12 ybill

t+1]︸ ︷︷ ︸
Sale price

.

Cheap financing (rtri
t < rois

t ) makes the trade attractive and hence decreases the required yield,

while the opportunity cost of using balance sheet (rsyn
t > rois

t ) has the opposite effect. We assume

that x1,t ≥ rois
t , which is consistent with the post-GFC data and implies that

e
1

12 rsyn
t+ j − e

1
12 rois

t+ j ≥ (1−h)(e
1
12 rois

t+ j − e
1
12 rtri

t+ j).

This assumption states that the balance sheet cost exceeds the financing advantage. It can be

justified on the grounds that, if it did not hold, it would be efficient for dealers to purchase Treasury

bills from money market funds, financed by repo loans from those same money market funds. This

would lead to large dealer balance sheets, causing the leverage constraint to tighten, and hence

cannot be part of an equilibrium.

Let us now define a yield curve , yl
n,t , such that the dealer will be certainly be willing to purchase

an n-month Treasury bond, regardless of her preferences or beliefs, if its yield exceeds this value.

This will be the net long curve. We will conjecture and verify that the curve defined recursively by

e−
n

12 yl
n,t ((1−h)(e

1
12 rtri

t − e
1
12 rois

t )+ e
1

12 rsyn
t )) = EQ

t [e−
n−1
12 yl

n−1,t+1]

has this property. That is, the net long curve is defined by the discount rate ex1,t = (1−h)(e
1
12 rtri

t −
e

1
12 rois

t )+ e
1

12 rsyn
t , as in the main text.

Fix some n> 7 and suppose yl
m,t is defined by this recursion for all m∈ {6, . . . ,n−1}. Consider

a trading strategy that purchases the bond, finances the trade with repo and unsecured borrowing,

offsets the balance sheet cost by reducing CIP activity, and unwinds at the first moment at which the

bond yield becomes weakly lower than yl
m,t . Let τ denote the months elapsed and let yn−τ,t+τ ≤

yl
n−τ,t+τ be the bond price at which the trade is unwound. According to the strategy, we have

ym,t ≥ yl
m,t for all m ∈ {6, . . . ,n−1}. Further, τ ≤ n−6 is guaranteed because by assumption, the

intermediary always unwinds the trade once the bond has six-month remaining maturity.
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The intermediary will be willing to engage in this strategy provided that

e−
n
12 yn,t︸ ︷︷ ︸

purchase price

+EQ
t [

τ−1

∑
j=0

e−∑
j
k=0 rois

t+k︸ ︷︷ ︸
discount rate

e−
n− j
12 yn− j,t+ j︸ ︷︷ ︸

interim bond price

((1−h)(e
1

12 rtri
t+ j − e

1
12 rois

t+ j)︸ ︷︷ ︸
repo financing benefits

+(e
1

12 rsyn
t+ j − e

1
12 rois

t+ j)︸ ︷︷ ︸
forgone CIP profits

)]

≤ EQ
t [e−∑

τ−1
k=0 rois

t+k︸ ︷︷ ︸
discount rate

e−
n−τ

12 yn−τ,t+τ︸ ︷︷ ︸
sale price

]

Since derivatives are priced by the intermediary, hedging does not affect the profit in the above

trade. We could add a hedging component to this equation, so that certain future fluctuations in the

financing rate are fixed at the beginning of the trade, as illustrated by Figure 4. We omit this extra

zero-cost component for simplicity.

However, this strategy cannot be fully hedged by interest rates swaps. First, the time τ at which

the bond yield falls below yl
m,t is uncertain, as is the ultimate sale price. Second, the interim price

of the bond before τ affects the size of the trade that needs to be financed, and consequently both

the benefit of cheap financing via tri-party repo and the opportunity cost of the balance sheet. The

effects of intermediate bond prices occur because the intermediary uses short term, as opposed to

term, financing, and because the assets are marked to market. Thus, even if it were possible to

perfectly hedge all of the relevant interest rates, the attractiveness of this trade would depend in

part on the intermediary’s beliefs about the stochastic process driving bond yields.

However, the worse case scenario for the sale price is that it is exactly equal to the unwinding

threshold, yn−τ,t+τ = yl
n−τ,t+τ . Under the assumption that x1,t ≥ rois

t , the worse case scenario for

the intermediate bond yields is that they are as low as possible (i.e. yn− j,t+ j = yl
n− j,t+ j), which is to

say that the trading strategy uses up the maximum possible balance sheet capacity. Consequently,

the intermediary will definitely be willing to buy the bond if, for all possible stopping times τ ,

e−
n

12 yn,t ≤−EQ
t [

τ−1

∑
j=0

e−
n− j
12 yl

n− j,t+ je−∑
j
k=0 rois

t+k((1−h)(e
1

12 rtri
t+ j − e

1
12 rois

t+ j)+(e
1

12 rsyn
t+ j − e

1
12 rois

t+ j))]

+EQ
t [e−∑

τ−1
k=0 rois

t+ke−
n−τ

12 yl
n−τ,t+τ ]
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and this is in fact the tightest possible bound. Rewriting the definition of net long curve, we obtain

e−∑
j−1
k=0 rois

t+ke−
n− j
12 yl

n− j,t+ j =− e−∑
j
k=0 rois

t+ke−
n

12 yl
n− j,t+ j((1−h)(e

1
12 rtri

t+ j − e
1
12 rois

t+ j)

+ e−∑
j
k=0 rois

t+kEQ
t+ j[e

− n− j−1
12 yl

n− j−1,t+ j+1]

for any j, and thus it also holds for any bounded stopping time τ . By the definition of the net long

curve, this inequality is equivalent to

e−
n

12 yn,t ≤ e−
n

12 yl
n,t

Thus, the intermediary will be willing to buy the bond, regardless of the nature of the intermediary’s

preferences and beliefs about the bond price process, if yn,t ≥ yl
n,t .

We conclude that the intermediary’s demand for a zero-coupon bond should be high if its yield

exceeds the net long curve yield. This demand is limited only by the intermediary’s leverage con-

straint: at some point, the intermediary will have switched entirely to doing the Treasury arbitrage

as opposed to other arbitrages, at which point rsyn
t − rois

t is no longer a valid measure of the oppor-

tunity cost of balance sheet. We therefore predict that if a bond’s yield exceeds the buy yield, the

intermediary’s demand should be substantial.

B.2 The Net Short Curve

We next develop parallel logic for the case of short-selling. In this case, we assume that the

intermediary borrows the security from a securities lender in exchange for cash equal to the market

value of the security, and receives a log interest rate rsec
t < rtri

t on the cash lent.

The intermediary will be willing to short a seven-month bond at yield y7,t if

e−
7

12 y7,t︸ ︷︷ ︸
Sale price

e
1
12 rsec

t︸ ︷︷ ︸
Gross return on cash in sec. lending

≥ EQ
t [e−

6
12 ybill

t+1 ]︸ ︷︷ ︸
Repurchase price

+e−
7
12 y7,t (e

1
12 rsyn

t − e
1
12 rois

t )︸ ︷︷ ︸
Forgone CIP profits

. (B-1)

Note that the sign of the forgone CIP profits has changed, relative to the analogous equation for the

net long curve, reflecting the fact that both buying and short-selling increase the size of the balance

sheet. In equation (B-1), moving the right-hand-side OIS term to the left and dividing both sides
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by exp( 1
12rois

t ), we obtain

e−
7

12 y7,t ≥ e−
7

12 y7,t e−
1
12 rois

t

(
e

1
12 rsyn

t − e
1
12 rsec

t

)
+ e−

1
12 rois

t EQ
t [e−

6
12 ybill

t+1] (B-2)

Under the assumption that yields are weakly positive, y7,t ≥ 0, the intermediately is definitely

willing to short if

e−
7

12 y7,t ≥ e−
7
12 ys

7,t ≡ e−
1
12 rois

t

(
e

1
12 rsyn

t − e
1

12 rsec
t

)
+ e−

1
12 rois

t EQ
t [e−

6
12 ybill

t+1]. (B-3)

Following the same spirit, let us define ys
n,t recursively for n ≥ 8 as

e−
n
12 ys

n,t = e−
1

12 rois
t

(
e

1
12 rsyn

t − e
1
12 rsec

t +EQ
t [e−

n−1
12 ys

n−1,t+1]
)
, (B-4)

which can be interpreted as the pricing equation for a bond with a monthly coupon of e
1
12 rsyn

t −
e

1
12 rsec

t , discounted using the OIS curve.

As above, fix some n > 7 and suppose ys
m,t is defined as above. Consider a trading strategy that

short-sells the bond, borrows the bond from a securities lender, offsets the balance sheet cost by

reducing CIP activity, and unwinds at the first moment at which the bond yield becomes weakly

higher than ys
m,t . Let τ denote this time and let yn−τ,t+τ ≥ ys

n−τ,t+τ be the bond price at which

the trade is unwound. According to the strategy, we have ym,t ≤ ys
m,t for all m ∈ {6,7, · · · ,n−1}.

Further, τ ≤ n−6 is guaranteed by the assumption that dealers always unwinds the trade once the

bond has six-month remaining maturity. The intermediary will be willing to engage in this strategy

provided it is profitable,

e−
n
12 yn,t ≥ EQ

t [
τ−1

∑
j=0

e−
n− j
12 yn− j,t+ je−∑

j
k=0 rois

t+k(e
1

12 rsyn
t+ j − e

1
12 rsec

t+ j)]+EQ
t [e−∑

τ−1
k=0 rois

t+ke−
n−τ

12 yn−τ,t+τ ]. (B-5)

Note that, because rsec
t < rsyn

t , the worst-case scenario is the one that makes intermediate bond

prices as high as possible. Unlike the net long curve, the fact that yn− j,t+ j < ys
n− j,t+ j is of no help

is generating a bound. In this case, we instead assume a lower bound on yields, ym,t ≥ 0, motivated
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the possibility of substitution to cash. In the worst-case scenario, the pricing condition becomes

e−
n
12 yn,t ≥EQ

t [
τ−1

∑
j=0

e−∑
j
k=0 rois

t+k(e
1
12 rsyn

t+ j − e
1
12 rsec

t+ j)]+EQ
t [e−∑

τ−1
k=0 rois

t+ke−
n−τ

12 ys
n−τ,t+τ ]. (B-6)

For all stopping times τ (bounded above by n−6), this is equivalent to

e−
n

12 yn,t ≥ e−
n
12 ys

n,t , (B-7)

which is to say that the intermediary will be willing to short-sell if yields are below ys
n,t , irrespective

of intermediary’s preferences or beliefs about future bond prices.3

Finally, we will illustrate that to a first-order approximation, the net-short curve in this appendix

is the same as the net-short curve (23) in the main text. Ignoring the covariance terms, the net-short

curve in this appendix is

1+
1

12
rois
t − n

12
ys

n,t ≈
1

12
rsyn
t − 1

12
rsec
t +EQ

t [1− n−1
12

ys
n−1,t+1]

nys
n,t ≈ rsec

t − (rsyn
t − rois

t )− (n−1)EQ
t [ys

n−1,t+1]

nys
n,t ≈ EQ

t

[
n−7

∑
j=0

(rsec
t − (rsyn

t − rois
t ))+

6
12

ybill
t+n−6

]
It is straightforward to show that equation (23) in the main text also leads to the same linear

approximation.

C Data

C.1 Data Sources

We obtain the Treasury term structure from Bloomberg, for maturities 0.25, 0.5, 1, 3, 5, 10, 15,

20, and 30 years, all at daily frequency. The T-bills are from the ticker "GB", representing actively

traded T-bill yields, and the non-bills are from the ticker "C082", representing the widely-used

3Subject to the caveat that the intermediary must believe in the zero lower bound. Our formulas can be readily
generated to other (non-zero) lower bounds, at the expense of additional notation.
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Bloomberg fair value Treasury yield curve.

We obtain OIS term structure denominated in USD from Bloomberg for maturities 0.25, 0.5,

1, 3, 5, 10, 15, 20, and 30 years, all at daily frequency. The ticker is "USSO" and data are from

Nov 1996 to Dec 2021.

We construct the synthetic dollar lending rate from Euro (EUR). For this purpose, we obtain

OIS term structure for EUR for maturities 1, 3, 5, 10, 15, 20, and 30 years. The EUR OIS data are

from Aug 2009 to Dec 2021.

Then we obtain the above-one-year maturity LIBOR basis at a daily frequency for EUR-USD

from Bloomberg. The EUR-USD LIBOR basis covers Nov 1999 to Dec 2021, and includes the

following maturities (in years): 1, 3, 5, 10, 15, 20, 30. EUR 3-month LIBOR basis is from

Bloomberg, and they are at daily frequency from Jan 2000 to Dec 2021.

To construct the OIS basis, we also collect EUR inter-bank interest-rate swap (IRS) term struc-

ture from Bloomberg at daily frequency. EUR IRS data are from Sep 1999 to Dec 2021. Then we

construct the OIS basis for each maturity as

EUR-USD OIS basis = EUR-USD LIBOR basis + (USD OIS - USD IRS) - (EUR OIS - EUR

IRS)

where each term has the same maturity.

Due to data limitation, we use the “hybrid OIS basis”, defined as follows:

• Whenever OIS data are available, we construct the OIS basis from the LIBOR basis and

LIBOR-OIS basis swap.

• When OIS data are not available (only happens before 2008), we use the LIBOR basis instead

This approach is essentially OIS basis throughout the whole sample period because OIS basis and

LIBOR basis are almost the same before the global financial crisis. A comparison between the OIS

basis and the LIBOR basis is shown in Figure A2.

On the quantity side, dealer net holdings are Treasury securities are based on the primary dealer

statistics published by the Federal Reserve Bank of New York.
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Figure A2: Comparison of LIBOR EUR Basis and OIS EUR Basis
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Notes: This figure illustrates the LIBOR EUR-USD basis and the OIS EUR-USD basis. The cross-currency
basis is defined as the dollar rate minus the synthetic rate, which is exactly the opposite to the CIP violations
we used in the model.
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C.2 Treasury Securities Lending Rebate Rates

We use data from Market Securities Finance to calculate the rebate rate on the cash collateral

when the dealer is borrowing Treasury bonds from a security lender. Figure A3 shows that the 95

percentile of all Treasury securities lending rebate rate is consistently below the triparty repo rate.

The spread between triparty and rebate rate is about 20 basis points on average and quite stable

throughout our sample.

Figure A3: Comparison Between Securities Lending Rebate and Triparty Repo Rates

(a) 95 pct of Rebate vs. Triparty (b) Spread between 95 pct of Rebate and Triparty

Notes: Panel (a) plots the yield spread between the 10-year Treasury bond and the 3-month Treasury bill
(in blue), and the primary dealers’ net holdings of Treasury bonds. Panel (b) plots the relationship between
the two variables post-2009 in a scatter plot.
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D Functional Forms and Parameters for Figures

This appendix section describes the functional form and parameter assumptions used to generate

Figures 14, 15, 16, 17, and 18. These functional form and parametric assumptions are for illustra-

tive purposes only and do not represent a calibration of the model.

We assume a constant elasticity functional form for the Treasury demand curves. Note that

both of these demand curves are functions of the hedged bond log risk premium πn,H (the expected

excess log return using rsyn as the risk-free rate). We assume that

DH(πn,H) = DH,0 exp(ηHπn,H) (D-1)

where DH,0 > 0 represents the demand at zero risk premium. The parameter ηH > 0 is the semi-

elasticity of bond demand to the log risk premium.

We similarly assume that

DU(πn,U) = DU,0 exp(ηU πn,U), (D-2)

where πn,U is the log risk premium with respect to Treasury bills, with DU,0 > 0 and ηU > 0.

Note that πn,H and πn,U are log risk premia; an ηU or ηH of 50 implies a roughly 1.35x change in

demand given a 1% excess return.

For the synthetic demand curve, we assume that

Dsyn(x) = Dsyn
0 x−ξ , (D-3)

where x = rsyn − rois is the spread in basis points and ξ > 0 is the elasticity of demand to the

spread. This functional form imposes an Inada-type condition that ensures that demand is large as

the spread becomes close to zero.

Note that these functional forms satisfy Assumption 1, irrespective of the parameters employed.

We use three sets of parameters to generate the figures used in the main text. The illustrative

parameters are chosen to generate clear graphs, and in particular have the property that the regime

can change given modest changes in term premium or bond supply. The pre-GFC parameter set

perturbs this parameter set using a smaller Treasury supply, larger dealer balance sheet capacity,
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and larger repo-bill spread. The post-GFC parameter set uses instead a large bond supply, compar-

atively tight dealer balance sheet, and zero repo-bill spread.

The parameters are chosen under the assumption of an annual holding period and that the

bond is a two-year bond (n = 2). The table below lists the sets of parameters we employ. Note

that Figures 14 and 15 plot dealer indifference curves for different levels of yQ, holding all else

constant. Likewise, Figures 16, 17, and 18 have the OIS term premium on the x-axis, which is

equivalent to yQ (holding yP constant). For this reason, we do not list yQ in the set of parameters

below.

Table A1: Parameters for Figures
Parameter Illustrative Value Pre-GFC Post-GFC

Sbond 10.5 9.5 14.5
q̄ 2 7 2

ybill (bps) 95 65 95
yP (bps) 95 65 95
rois (bps) 100
rtri (bps) 95

h 2%
rsec (bps) 75

Dsyn
0 4
ξ 1

DU,0 9.5
DH,0 0.5

ηU = ηH 50

E Details of the Term Structure Model

The term structure model consists P and Q dynamics

zt+1 = kP0,z +KP
1,z · zt +(Σz)

1/2
ε
P
z,t+1,ε

P
z,t+1 ∼ N(0, IN),

zt+1 = kQ0,z +KQ
1,z · zt +(Σz)

1/2
ε
Q
z,t+1,ε

Q
z,t+1 ∼ N(0, IN)

The state variable vector zt is 5-by-1, include the first three PCs of OIS term structure (iPC1
t ,

iPC2
t , and iPC3

t ) and the first two PCs of the cross-currency basis term structure (rcip,PC1
t and
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rcip,PC2
t ),

zt =


iPC1
t

iPC2
t

iPC3
t

rcip,PC1
t

rcip,PC2
t

 .

The monthly OIS rate and the monthly synthetic rate are both affine functions of the state

vector,
1

12
rois
t = δ0 +(δ1)

T zt ,

1
12

rsyn
t = δ̂0 +(δ̂1)

T zt ,

For pricing Treasury securities, we also need the state vector xt = (x1,t ,x2,t ,x3,t), constructed from

the data as

x1,t = ln((1−h)(e
1
12 rtri

t − e
1

12 rois
t )+ e

1
12 rsyn

t )

x2,t = ln(e
1

12 rsec
t + e

1
12 rois

t − e
1

12 rsyn
t )

x3,t =
1

12
ybill

t

To operationalize the term structure model and reduce dimensionality, we assume that the vec-

tor xt is affine in the state vector zt ,

xt =

x1,t

x2,t

x3,t

= γ0 +Γ1zt +(Σx)
1
2 εx,t ,εx,t ∼ N(0, I3).

All state variables xk,t ,k ∈ {1,2,3} represent yields at the monthly frequency. However, due

to the lack of data, we use overnight tri-party rate and overnight security lending rate as proxies

for the monthly counterparts. Furthermore, the one-month CIP basis is subject to a quarter-end

effect, where the one-month CIP basis spikes at the end of each quarter due to capital regulation,

as documented by Du et al. (2018b). To avoid such effect, we instead use the three-month CIP

basis to construct the synthetic rate. The underlying assumption is that the rate difference due to

maturity difference between one month and three months is negligible.
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From our estimations, variance matrix Σx is close to zero (the maximum eigen value of Σx is

about 7× 10−5, and much smaller than the maximum eigenvalue of Σz which is 4× 10−3). To

simplify expositions, we set Σz = 0 and limit the actual state space to be five-dimensional. Thus,

we will proceed with

xt = γ0 +Γ1zt

In what follows, we first show the derivations of the OIS term structure and the basis term

structure. Then we provide details on how the model generates dealer net long and net short

curves. Next, we discuss the conversions between zero-coupon yields and par yields. Finally, we

discuss how to estimate the model.

E.1 OIS Term Structure

The zero-coupon OIS term structure is the “risk-free rate” term structure in our model. Denote the

swap rate as in,t . The swap exchanges floating payment pegged to the short-term OIS rate it(≡ rois
t )

to the fixed swap rate in,t . By construction, the floating leg and the fixed leg should have the same

present value. Thus,

exp(nin,t)E
Q
t [exp(

n

∑
k=1

−it+k−1)] = 1

Conjecture

nin,t = An +Bnzt

Then we have

exp(−n · in,t) = exp(−An −Bnzt) = EQ
t [exp(−

n

∑
k=1

it+k−1)]

= EQ
t [EQ

t+1[exp(−
n−1

∑
k=1

i(t+1)+k−1)]exp(−it)]

= EQ
t [exp(−An−1 −Bn−1zt+1 −δ0 −δ1zt)]

= EQ
t [exp(−An−1 −Bn−1kQ0,z −Bn−1KQ

1,zzt+1 +
1
2

Bn−1Σz(Bn−1)
T −δ0 −δ1zt)]
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which implies

An = δ0 +An−1 +Bn−1kQ0,z −
1
2

Bn−1Σz(Bn−1)
T

Bn = δ1 +Bn−1KQ
1,z

for all n ≥ 1. The starting values are A0 = B0 = 0.

E.2 Synthetic-Rate Term Structure

We denote the synthetic rate as in,t + rcip
n,t ≡ rsyn

n,t , i.e., composed of both OIS rate and the cross-

currency basis. Conjecture that the cumulative synthetic rate is affine in the state vector,

n(rcip
n,t + in,t) = Asyn

n +Bsyn
n zt

Then we have

exp(−n(rcip
n,t + in,t)) = exp(−Asyn

n −Bsyn
n zt)

= EQ
t [exp(

n

∑
k=1

(−rcip
t+k−1 − it+k−1))]

= EQ
t [EQ

t+1[exp(
n−1

∑
k=1

(−rcip
(t+1)+k−1 − i(t+1)+k−1))]exp(−rcip

t − it)]

= EQ
t [exp(−Asyn

n−1 −Bsyn
n−1zt+1 − (δ0 + δ̂0)− (δ1 + δ̂1)zt)]

= EQ
t [exp(−Asyn

n−1 −Bsyn
n−1kQ0,z −Bsyn

n−1KQ
1,zzt+1 +

1
2

Bsyn
n−1Σz(B

syn
n−1)

T − (δ0 + δ̂0)− (δ1 + δ̂1)zt)]

The above equation is the present value of a CIP strategy that earns the CIP deviations, and the

values is the same as the long-term CIP discounted at the long-term discount rate. Then we obtain

the following iteration:

Asyn
n = δ0 + δ̂0 +Asyn

n−1 +Bsyn
n−1kQ0,z −

1
2

Bsyn
n−1Σz(B

syn
n−1)

T

Bsyn
n = δ1 + δ̂1 +Bsyn

n−1KQ
1,z

with the starting values Asyn
0 = Bsyn

0 = 0.
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E.3 Treasury Net Long Curve

Next, we derive the iteration steps for the Treasury net long curve.

e−
n

12 yl
n,t ex1,t = EQ

t [e−
n−1
12 yl

n−1,t+1]

We use ι1 = (1,0,0) to denote the indicator vector of the first element, so x1,t = ι1xt = ι1(γ0+Γ1zt).

Conjecture that the cumulative yield is affine in the state vector,

n
12

yl
n,t = Al

n +Bl
nzt

For all n ≥ 7, the iteration is

exp(−
(

Al
n +Bl

nzt

)
) = EQ

t [e−
n−1
12 yl

n−1,t+1−ι1(γ0+Γ1zt)]

= EQ
t [exp(−

(
Al

n−1 +Bl
n−1zt+1 + ι1(γ0 +Γ1zt)

)
)]

= EQ
t [exp(−

(
Al

n−1 +Bl
n−1(k

Q
0,z +KQ

1,z · zt +(Σz)
1/2

ε
Q
z,t+1)+ ι1(γ0 +Γ1zt)

)
)]

= EQ
t [exp(−

(
Al

n−1 +Bl
n−1kQ0,z + ι1γ0 −

1
2

Bl
n−1Σz(Bl

n−1)
′+(Bl

n−1KQ
1,z + ι1Γ1) · zt

)
)]

which implies the iteration equation

Al
n = ι1γ0 +Al

n−1 +Bl
n−1kQ0,z −

1
2

Bl
n−1Σz(Bl

n−1)
T

Bl
n = ι1Γ1 +Bl

n−1KQ
1,z

At n = 6, we have
6

12
yl

6,t =
6
12

ybill
t = 6x3,t = 6ι3(γ0 +Γ1zt)

with initial values

Al
6 = 6ι3γ0, Bl

6 = 6ι3Γ1
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E.4 Treasury Net Short Curve

Next, we derive the iteration steps for the Treasury net short curve.

e−
n

12 ys
n,t ex2,t = EQ

t [e−
n−1
12 ys

n−1,t+1]

Similar arguments as in the last section will lead to cumulative yield

n
12

ys
n,t = As

n +Bs
nzt

where

As
n = ι2γ0 +As

n−1 +Bs
n−1kQ0,z −

1
2

Bs
n−1Σz(Bs

n−1)
T

Bs
n = ι2Γ1 +Bs

n−1KQ
1,z

At n = 6, we have
6

12
ys

6,t =
6
12

ybill
t = 6x3,t = 6ι3(γ0 +Γ1zt)

with initial values

As
6 = 6ι3γ0, Bs

6 = 6ι3Γ1

E.5 Par Curve and Zero Curve Conversion

In our term structure model, all the yields are zero-coupon yields. In the data, on the other hand,

yields are par yields. The ideal way to resolve the mismatch is asking the model to convert all

zero-coupon yields into par yields. However, the model is solved thousands of times when we

estimate it, and the extra conversion significantly slows the estimation process. Thus, we do the

following:

• We convert the OIS term structure and the CIP basis term structure into zero-coupon yields

for model estimation purpose.

• Once we finish estimating the model, then we generate the net long and net short zero-coupon

curves, and convert them into par yields.
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For the par-to-zero conversion, we follow the standard Svensson (1994) method that fits the

whole yield curve with a parsimonious functional form and infer the zero yields.

For the zero-to-par conversion, we directly use the definition. We want to transform the annual-

ized zero-coupon yields rn,t into annualized par yields rpar
n,t with coupon payment every 6 months.

Then for a coupon-bond of maturity n, the pricing relationship is

qpar
n,t =

rpar
n,t

2

(
e−

6
12 rt,6 + e−

12
12 rt,12 + · · ·+ e−

n
12 rn,t

)
+ e−

n
12 rn,t (E-1)

For a bond at the par, the price is qpar
n,t = 1, indicating the par yield as

rpar
n,t = 2× 1− e−

n
12 rn,t

e−
6

12 rt,6 + e−
12
12 rt,12 + · · ·+ e−

n
12 rn,t

(E-2)

E.6 Model Estimation

We estimate the model to fit the OIS and basis term structure. Then we use regression-implied

coefficients γ0 and Γ1 to obtain the model-implied net long and net short curves. Denote the

observed OIS yield of maturity n at time t as

în,t = in,t + eois
n,t , eois

t ∼ N (0,Σois)

and the observed basis as

r̂cip
n,t = rcip

n,t + ebasis
n,t , ebasis

t ∼ N (0,Σbasis)

We denote the stacked OIS yields (across different maturities) as ît , and the stacked basis rates as

r̂cip
t . For the estimation step, the set of parameters is Θ= {kQ0,z,K

Q
1,z,k

P
0,z,K

P
1,z,Σz,Σois,Σbasis,δ0,δ1, δ̂0, δ̂1}.

The objective of the estimation is to maximize the log likelihood that the observed yields are gen-

erated by the model,

L ({ît , r̂
cip
t ,zt}t∈data;Θ)
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Denote the log likelihood an N-variable normal variable Z with mean µ and variance matrix Σ as

G (Z,µ,Σ). Then the objective function is

L ({ît , r̂
cip
t ,zt}t∈data;Θ) =

∑
t∈data

G (zt − kP0,z −KP
1,z · zt−1,0,Σz)︸ ︷︷ ︸

state variable physical dynamics

+G (ît − it ,0,Σois)︸ ︷︷ ︸
OIS fitting

+G (r̂cip
t − rcip

t ,0,Σbasis)︸ ︷︷ ︸
basis fitting


The whole estimation problem is thus

max
kQ0,z,K

Q
1,z,k

P
0,z,K

P
1,z,Σz,Σois,Σbasis,δ0,δ1,δ̂0,δ̂1

L ({ît , r̂
cip
t ,zt}t∈data;Θ) (E-3)

To reduce dimensionality, we assume that the covariance matrices for observation errors are in the

form of Σois = σoisI and Σbasis = σbasisI.

Compared to the classical term structure estimation problem, the key challenge of this problem

is that we need to estimate two inter-linked term structures simultaneously. However, the canon-

ical form transformation in Joslin et al. (2011) only applies to one term structure. To resolve the

challenge and at the same time taking advantage of the canonical form, we design the following

two-step procedure that applies the canonical form to each individual term struccture as initializa-

tion (the initial values for this high-dimensional optimization problem are quite important):

1. Divide the state-space into two blocks, an OIS block, zois
t = (z1,t ,z2,t ,z3,t), and a basis block

zbasis
t = (z4,t ,z5,t). Similarly, we denote the associated sub-group risk-neutral dynamic pa-

rameters as kQ0,zois ,K
Q
1,zois and kQ0,zbasis,K

Q
1,zbasis . Denote the sub-group physical dynamic param-

eters as kP0,zois ,KP
1,zois and kP0,zbasis,KP

1,zbasis . Also divide the observations into the OIS group and

basis group. Then apply the standard canonical form estimation procedure to two models

separately,

L ({ît ,zt}ois
t∈data;kQ0,zois,K

Q
1,zois,k

P
0,zois,KP

1,zois,Σ
ois
z ,Σois,δ

ois
0 ,δ ois

1 )

L ({ît ,zt}basis
t∈data;kQ0,zbasis,K

Q
1,zbasis,k

P
0,zbasis,KP

1,zbasis ,Σ
basis
z ,Σbasis,δ

basis
0 ,δ basis

1 )

where the short rate in the first estimation is δ ois
0 +δ ois

1 ∗ zois
t , and the short rate in the second

estimation is δ basis
0 + δ basis

1 ∗ zbasis
t is a two-dimensional vector that loads on zbasis

t . The
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covariance matrix Σois
z is 3×3 and Σbasis

z is 2×2. After estimating the above dynamics, we

construct an initialization of the original problem as

kQ0,z =

(
kQ0,zois

kQ0,zbasis

)
, KQ

1,z =

(
KQ

1,zois

KQ
1,zbasis

)
, Σz =

(
Σ

ois
z

Σ
basis
z

)

δ0 = δ
ois
0 , δ1 =

 δ ois
1

0

0

 , δ̂0 = δ
ois
0 +δ

basis
0 , δ̂1 =

(
δ ois

1

δ basis
1

)

We initialize the physical dynamic parameters (kP0,z,K
P
1,z) simply from linear regressions,

zt ∼ kP0,z +KP
1,z · zt−1

2. Then we feed these initial values to the whole estimation problem (E-3), and apply the opti-

mization package in Matlab to optimize over the whole high-dimensional parameter space.

We use the equivalent implementation of the CIP short rate (instead of the synthetic lending

short rate), rsyn
t − rois

t , and the corresponding loading δ̂0 −δ0 +(δ̂1 −δ1)zt .

After we finish estimating the key parameter set Θ, we proceed to obtain γ0 and Γ1 via a simple

linear regressions,

xt ∼ γ0 +Γ1zt

We find that the residual standard errors for this linear regression are one order of magnitude

smaller than Σz. In other words, we are able to obtain very accurate approximation of xt through

the state vector zt , so adding the extra estimation error to the above approximation in the model

will not cause much difference, but it requires augmenting the state space. For this reason, we

make the assumption that xt is spanned by zt in the main model.

Finally with estimated Θ and (γ0,Γ1), we are able to obtain the Treasury net long and net short

curves. We convert these curves into par curves to be comparable with the Treasury yield data.
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E.7 Stationarity Restrictions

Treasury yields can be non-stationary, but the spread between an OIS rate and the matched-maturity

Treasury yield cannot diverge due to arbitrage incentives in financial markets. Our main approach

does not impose such a restriction for simplicity. In this subsection, we discuss how to impose

stationarity on the process xt and show that results are broadly similar.

First, our estimation reveals that zt contains unit-root processes. In particular, the Q-dynamics

of zt contains unit-root elements. Denote the eigenvalue decomposition of KQ
1,z as

KQ
1,z =V DV−1

where D is an diagonal matrix that contains all the eigenvalues of KQ
1,z, and V is the matrix of all

the column eigenvectors for KQ
1,z. We find that two among the five eigenvalues have absolute values

above 0.999, which is a strong sign of unit root.

To operationalize the stationarity restriction, we rotate the state vector zt to z̃t = V−1zt , and

rewrite the Q-dynamics in (17) as

z̃t+1 =V−1kQ0,z +Dz̃t +V−1(Σz)
1/2

ε
Q
z,t+1,ε

Q
z,t+1 ∼ N(0, IN)

We denote the spread vector as

x̂t = xt −

 rois
t + rcip

t

rois
t − rcip

t

rois
t


Then we project x̂t on the stationary components of z̃t , i.e., three of five with (absolute values of)

eigenvalues below 0.999. The loadings on the non-stationary components are set as zeros. Then

we denote the whole projection as

x̂t = γ̃0 + Γ̃1z̃t

Next, we rotate back to zt ,

x̂t = γ̃0 + Γ̃1V−1zt
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Thus, we obtain

xt = γ̃0 + Γ̃1V−1zt +

 rois
t + rcip

t

rois
t − rcip

t

rois
t


In the implementation, we find that there are complex-number eigenvalues, so the resulting γ̃0 and

Γ̃1V−1 are also complex numbers. Nevertheless, the imaginary parts are quite small so we only

keep the real parts.

With the projection of xt on zt , we are able to derive the Treasury net long and net short curves.

We illustrate the results in Figure A4. We find that results are very close to the baseline results in

Figure 11. Furthermore, all other results, such as the relative yield index matching the movements

in dealer position, are quite similar. For conciseness, we omit other results in this appendix.

F Proofs

F.1 Proof of Proposition 1 (Long Regime)

Define the function

f long
1 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) = e−(ny−(n−1)ε)−

exp(−(n−1)yQ)
(1−h)(ertri − erois

)+ ersyn

and the function

f long
2 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) =

q̄− e−(ny−(n−1)(ε−ω))Sbond +DU(ny− ybill − (n−1)(yP+ ε))+δU −
(
Dsyn(rsyn − rois)+δsyn

)
.

By assumption, DU and Dsyn are continuously differentiable, and hence f1 and f2 are continuously

differentiable.

Suppose there exists, given the exogenous values yP,rois,rtri,ybill and some initial point (Sbond >

0, q̄ > 0,yQ,ε = 0,ω = 0,δU = 0,δH = 0,δsyn = 0), a solution[
f long
1 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

f long
2 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

]
=

[
0

0

]
,
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Figure A4: Long and Short Curves – OIS Spreads using the Alternative Projection Method.
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Notes: In this figure, we show the model-implied long and short Treasury curves minus the OIS rates for
corresponding maturities, together with the actual Treasury–OIS spreads. We use the alternative projection
method as in Internet Appendix Section E.7. Data are from 2003 to 2021. All yields are par yields.
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such that

DH(ny∗− rsyn∗− (n−1)yP)+DU(ny− ybill − (n−1)yP)< e−ny∗Sbond.

Such a point constitutes an equilibrium.

Observe that

∂ f long
1 (·)
∂y

< 0,
∂ f long

1 (·)
∂ rsyn > 0,

∂ f long
2 (·)
∂y

> 0,
∂ f long

2 (·)
∂ rsyn > 0,

and consequently ∂ f long
1 (·)
∂y

∂ f long
1 (·)

∂ rsyn

∂ f long
2 (·)
∂y

∂ f long
2 (·)

∂ rsyn


is invertible (its determinant is strictly negative).

It follows that the equilibrium (y∗,rsyn∗), if it exists, is unique. Suppose not and there ex-

ists another equilibrium (y,rsyn) in the long regime. If rsyn > rsyn∗, then ỹ > y∗ according to

f long
1 (ỹ,rsyn) = 0. By monotonicity of f long

2 , we have f long
2 (y,rsyn) > f long

2 (y∗,rsyn∗) = 0, which

contradicts to (y,rsyn) being an equilibrium. A symmetric argument rules out all rsyn < rsyn∗. Thus,

the equilibrium solution to y∗ is unique. Strict monotonicity ensures the uniqueness of y∗.

By the implicit function theorem,

[
∂y∗(·)

∂x
∂ rsyn∗(·)

∂x

]
=−

∂ f long
1 (·)
∂y

∂ f1(·)
∂ rsyn

∂ f2(·)
∂y

∂ f2(·)
∂ rsyn

−1∂ f long
1 (·)
∂x

∂ f long
2 (·)
∂x


for any x ∈ {Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn}. Observe that the signs of the negative inverse matrix

are

sgn

−

∂ f long
1 (·)
∂y

∂ f long
1 (·)

∂ rsyn

∂ f long
2 (·)
∂y

∂ f long
2 (·)

∂ rsyn

−1
= sign

 ∂ f long
2 (·)

∂ rsyn −∂ f long
1 (·)

∂ rsyn

−∂ f long
2 (·)
∂y

∂ f long
1 (·)
∂y

=

[
1 −1

−1 −1

]
.

We solve for the comparative statics as follows:

1. An increase in Sbond: ∂ f long
1 (·)
∂x = 0, ∂ f long

2 (·)
∂x < 0, and therefore ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x > 0.
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2. A decrease in q̄ or a decrease in δU : ∂ f long
1 (·)
∂x = 0 and

∂ f long
2 (·)
∂x

=−
∂ f long

2 (·)
e−ny ·∂ (Sbond)

.

Thus, the decrease in q̄ or δU is equivalent to the same same size expansion in the dollar

supply of bonds.

3. An increase in δH has ∂ f long
1 (·)
∂x = 0, ∂ f long

2 (·)
∂x = 0, and therefore ∂y∗(·)

∂x = 0 and ∂ rsyn∗(·)
∂x = 0.

4. An increase in yQ has ∂ f long
1 (·)
∂x > 0, ∂ f long

2 (·)
∂x = 0 and thus ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x < 0.

5. An increase of dy in both yQ and yP is equivalent to an increase ε by ∆ε = dy in both f1

and f2 and an increase in ω by ∆ω = dy. The increase in ε causes an n−1
n ∆ε increase in

y and no change in rsyn. The increase in ω has ∂ f long
1 (·)
∂x = 0, ∂ f long

2 (·)
∂x > 0, and thus thus

∂y∗(·)
∂x < 0 and ∂ rsyn∗(·)

∂x < 0. Taking the two effects together, clearly rsyn∗ will decrease. To

determine the sign on y∗, we can evaluate the change of dy in both yQ and yP directly and

obtain ∂ f long
1 (·)
∂x > 0, ∂ f long

2 (·)
∂x < 0, which implies y∗ will increase. In summary, we find that

the increase of dy in both yQ and yP increases y∗ by less than n−1
n ∆ε and decreases rsyn∗.

Furthermore, the absolute value of the effect of ω is smaller than that of ε , indicating that

the total effect is still to increase bond yield.

Taking the two effects together, we find that the increase of dy in both yQ and yP increase y∗

by less than n−1
n ∆ε and decreases rsyn∗.

6. An increase in δsyn has ∂ f long
1 (·)
∂x = 0, ∂ f long

2 (·)
∂x < 0, and thus ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x > 0.

F.2 Proof of Proposition 2 (Short Regime)

Define the function

f short
1 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) = e−(ny−(n−1)ε)−

exp(−(n−1)yQ)
ersec

+ erois − ersyn
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and the function

f short
2 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) =q̄+ e−(ny−(n−1)(ε−ω))Sbond

−DU(ny− ybill − (n−1)(yP+ ε))−δU

−
(
Dsyn(rsyn − rois)+δsyn

)
−2(DH(ny− ysyn − (n−1)(yP+ ε))+δH)

By assumption, DU , DH , and Dsyn are continuously differentiable, and hence f short
1 and f short

2 are

continuously differentiable.

Suppose there exists, given the exogenous values yP,rois,rtri,ybill and some initial point (Sbond >

0, q̄ > 0,yQ,ε = 0,ω = 0,δU = 0,δH = 0,δsyn = 0), a solution[
f short
1 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

f short
2 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

]
=

[
0

0

]
,

such that

DH(ny∗− rsyn∗− (n−1)yP)+DU(ny− ybill − (n−1)yP)> e−ny∗Sbond.

Such a point constitutes an equilibrium.

Observe that

∂ f short
1 (·)
∂y

< 0,
∂ f short

1 (·)
∂ rsyn < 0,

∂ f short
2 (·)
∂y

< 0,
∂ f short

2 (·)
∂ rsyn > 0,

and consequently ∂ f short
1 (·)
∂y

∂ f short
1 (·)
∂ rsyn

∂ f short
2 (·)
∂y

∂ f short
2 (·)
∂ rsyn


is invertible (its determinant is strictly negative).

It follows that the equilibrium (y∗,rsyn∗), if it exists, is unique. Suppose not and there exists

another pair (rsyn,y) that satisfies the eqilibrium in the short regime. If rsyn > rsyn∗, we must

have y < y∗ due to f short
1 (y,rsyn) = f short

1 (y∗,rsyn∗). (if no such ỹ exists, rsyn cannot be part of an

equilibrium). It follows that f short
2 (y,rsyn)> f short

2 (y∗,rsyn∗) = 0, and hence rsyn cannot be part of
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an equilibrium. A symmetric argument rules out all rsyn < rsyn∗, and strict monotonicity ensures

the uniqueness of y∗.

By the implicit function theorem,

[
∂y∗(·)

∂x
∂ rsyn∗(·)

∂x

]
=−

∂ f short
1 (·)
∂y

∂ f short
1 (·)
∂ rsyn

∂ f short
2 (·)
∂y

∂ f short
2 (·)
∂ rsyn

−1∂ f short
1 (·)
∂x

∂ f short
2 (·)
∂x


for any x ∈ {Sbond, q̄,yQ,ε,ω,δU ,δH}. Observe that the signs of the negative inverse matrix are

sgn

−

∂ f short
1 (·)
∂y

∂ f short
1 (·)
∂ rsyn

∂ f short
2 (·)
∂y

∂ f short
2 (·)
∂ rsyn

−1
= sign

 ∂ f short
2 (·)
∂ rsyn −∂ f short

1 (·)
∂ rsyn

−∂ f short
2 (·)
∂y

∂ f short
1 (·)
∂y

=

[
1 1

1 −1

]
.

We solve for the comparative statics as follows:

1. An increase in Sbond: ∂ f short
1 (·)
∂x = 0, ∂ f short

2 (·)
∂x > 0, and therefore ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x < 0.

Thus, bond yield y∗ increases, but the synthetic rate rsyn∗ decreases.

2. An increase in q̄ or a decrease in δU (i.e., a parallel decrease in DU ): ∂ f short
1 (·)
∂x = 0 and

∂ f short
2 (·)
∂ q̄

=−
∂ f short

2 (·)
∂δU

=
∂ f short

2 (·)
e−ny ·∂ (Sbond)

.

Thus, the increase in q̄ or the same decrease in δU are equivalent to the same same size

expansion in the dollar supply of bonds.

3. An increase in δH has ∂ f short
1 (·)
∂x = 0, ∂ f short

2 (·)
∂x < 0, and therefore ∂y∗(·)

∂x < 0 and ∂ rsyn∗(·)
∂x > 0.

4. An increase in yQ has ∂ f short
1 (·)
∂x > 0, ∂ f short

2 (·)
∂x = 0 and thus ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x > 0.

5. An increase of dy in both yQ and yP: this change is equivalent to an increase ε by dy in both

f short
1 and f short

2 and an increase in ω by dy. The increase in ε causes an n−1
n ∆ε decrease

in y and no change in rsyn∗. The increase in ω has ∂ f short
1 (·)
∂x = 0, ∂ f short

2 (·)
∂x < 0, and thus thus

∂y∗(·)
∂x < 0 and ∂ rsyn∗(·)

∂x > 0. Taking the two effects together, clearly rsyn∗ will increase. To

determine the sign on y∗, we can evaluate the change of dy in both yQ and yP directly and
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obtain ∂ f short
1 (·)
∂x > 0, ∂ f short

2 (·)
∂x > 0, which implies y∗ will increase. In summary, we find that

the increase of dy in both yQ and yP increases y∗ by less than n−1
n ∆ε and increases rsyn∗.

6. An increase in δsyn has ∂ f long
1 (·)
∂x = 0, ∂ f long

2 (·)
∂x < 0, and thus ∂y∗(·)

∂x < 0 and ∂ rsyn∗(·)
∂x > 0.

F.3 Proof of Proposition 3 (Intermediate Regime)

Define the functions

f int
1 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) = q̄− e−(ny−(n−1)(ε−ω))Sbond −

(
Dsyn(rsyn − rois)+δsyn

)
+DU(ny− ybill − (n−1)(yP+ ε))+δU

and

f int
2 (y,rsyn;Sbond, q̄,yQ,ε,ω,δU ,δH ,δsyn) = q̄− (DH(ny− rsyn − (n−1)(yP+ ε))+δH)

−
(
Dsyn(rsyn − rois)+δsyn

)
.

By assumption, DU , DH , and Dsyn are continuously differentiable, and hence f int
1 and f int

2 are

continuously differentiable.

Suppose there exists, given the exogenous values yP,rois,rtri,ybill and some initial point (Sbond >

0, q̄ > 0,yQ,ε = 0,ω = 0,δU = 0,δH = 0,δsyn = 0), a solution[
f int
1 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

f int
2 (y∗,rsyn∗;Sbond, q̄,yQ,0,0,0,0,0)

]
=

[
0

0

]
,

such that

ys < y∗ < yl

Such a point constitutes an interior equilibrium.

Observe that
∂ f int

1 (·)
∂y

= ne−nySbond +nD′
U > 0

∂ f int
1 (·)

∂ rsyn =−(Dsyn)′ > 0
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∂ f int
2 (·)
∂y

=−nD′
H < 0

∂ f int
2 (·)

∂ rsyn = D′
H − (Dsyn)′ > 0

Then the determinant of the derivative matrix∂ f int
1 (·)
∂y

∂ f int
1 (·)

∂ rsyn

∂ f int
2 (·)
∂y

∂ f int
2 (·)

∂ rsyn


is positive, which implies that the derivative matrix is invertible.

It follows that the equilibrium (y∗,rsyn∗), if it exists, is unique. Suppose not and there exists

another pair (rsyn,y) that satisfies the equilibrium in the intermediate regime. If rsyn > rsyn∗, we

must have y> y∗ due to f int
2 (y,rsyn)= f int

2 (y∗,rsyn∗). It follows that f int
1 (y,rsyn)> f int

1 (y∗,rsyn∗)= 0,

and hence rsyn cannot be part of an equilibrium. A symmetric argument rules out all rsyn < rsyn∗.

Strict monotonicity also guarantees the uniqueness of y∗.

By the implicit function theorem,

[
∂y∗(·)

∂x
∂ rsyn∗(·)

∂x

]
=−

∂ f int
1 (·)
∂y

∂ f int
1 (·)

∂ rsyn

∂ f int
2 (·)
∂y

∂ f int
2 (·)

∂ rsyn

−1[
∂ f int

1 (·)
∂x

∂ f int
2 (·)
∂x

]

for any x ∈ {Sbond, q̄,yQ,ε,ω,δU ,δH}. Observe that the signs of the negative inverse matrix are

sgn

−

∂ f int
1 (·)
∂y

∂ f int
1 (·)

∂ rsyn

∂ f int
2 (·)
∂y

∂ f int
2 (·)

∂ rsyn

−1
= sign

−

 ∂ f int
2 (·)

∂ rsyn −∂ f int
1 (·)

∂ rsyn

−∂ f int
2 (·)
∂y

∂ f int
1 (·)
∂y

=

[
−1 1

−1 −1

]
.

We solve for the comparative statics as follows:

1. An increase in Sbond: ∂ f int
1 (·)
∂x < 0, ∂ f int

2 (·)
∂x = 0, and therefore ∂y∗(·)

∂x > 0 and ∂ rsyn∗(·)
∂x > 0. Thus,

both the bond yield y∗ and the synthetic rate rsyn∗ increase.

2. An increase in q̄ : ∂ f int
1 (·)
∂x > 0 and ∂ f int

2 (·)
∂ q̄ > 0. Thus, we have ∂ rsyn∗(·)

∂x < 0. To determine the
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sign of ∂y∗(·)
∂x , we note that

∂ f int
2 (·)

∂ rsyn = D′
H − (Dsyn)′ >

∂ f int
1 (·)

∂ rsyn =−(Dsyn)′ > 0

∂ f int
1 (·)
∂ q̄

=
∂ f int

2 (·)
∂ q̄

= 1

Thus,
∂y∗(·)

∂x
∝

∂ f int
1 (·)

∂ rsyn −
∂ f int

2 (·)
∂ rsyn < 0

3. An increase in δU : ∂ f int
1 (·)
∂x > 0 and ∂ f int

2 (·)
∂ q̄ = 0. Thus, we have ∂y∗(·)

∂x < 0 and ∂ rsyn∗(·)
∂x < 0.

4. An increase in δH has ∂ f int
1 (·)
∂x = 0, ∂ f int

2 (·)
∂x < 0, and therefore ∂y∗(·)

∂x < 0 and ∂ rsyn∗(·)
∂x > 0.

5. An increase in yQ has ∂ f int
1 (·)
∂x = 0, ∂ f int

2 (·)
∂x = 0 and thus ∂y∗(·)

∂x = 0 and ∂ rsyn∗(·)
∂x = 0.

6. An increase of dy in both yQ and yP: this change is equivalent to an increase ε by dy in both

f int
1 and f int

2 and an increase in ω by dy. The increase in ε causes an n−1
n dy increase in y and

no change in rsyn∗. The increase in ω has ∂ f short
1 (·)
∂x > 0, ∂ f short

2 (·)
∂x = 0, and thus ∂y∗(·)

∂x < 0 and
∂ rsyn∗(·)

∂x > 0. To determine the total effect on y∗, we can evaluate the change of dy in both yQ

and yP directly and obtain ∂ f int
1 (·)
∂x < 0, ∂ f int

2 (·)
∂x > 0, which implies that the total effect on y∗ is

positive. In summary, we find that the increase of dy in both yQ and yP increases y∗ (by less

than n−1
n dy) and increases rsyn∗.

7. An increase in δsyn has ∂ f long
1 (·)
∂x =

∂ f long
2 (·)
∂x = −1, and thus ∂y∗(·)

∂x ∝
∂ f int

2 (·)
∂ rsyn − ∂ f int

1 (·)
∂ rsyn > 0 and

∂ rsyn∗(·)
∂x > 0.

F.4 Proof of Proposition 4

Propositions 1, 2, and 3 establish that there is at most one equilibrium in each regime. To proceed,

we first prove that across all possible regimes, the equilibrium is unique. Then we show the exis-

tence of an equilibrium. Finally, we will show how bond supply Sbond and the risk premium yQ
affects the equilibrium regime.

A.32

Electronic copy available at: https://ssrn.com/abstract=4150025



Define

f1(y,rsyn;Sbond,yQ) = e−ny −
exp(−(n−1)yQ)

(1−h)(ertri − erois
)+ ersyn

f2(y,rsyn;Sbond,yQ) = q̄− e−nySbond −Dsyn(rsyn − rois)+DU(ny− ybill − (n−1)yP).

f3(y,rsyn;Sbond,yQ) = e−nySbond −DH(ny− rsyn − (n−1)yP)−DU(ny− ybill − (n−1)yP).

f4(y,rsyn;Sbond,yQ) = e−ny −
exp(−(n−1)yQ)
ersec

+ erois − ersyn

f5(y,rsyn;Sbond,yQ) = q̄+ e−nySbond −Dsyn(rsyn − rois)−DU(ny− ybill − (n−1)yP)

−2DH(ny− rsyn − (n−1)yP).

where f1 is the residual of long-regime dealer indifference equation (31), f2 is the residual of the

long-regime market indifference curve (32), f3 is the residual of the bond-market clearing condition

in (27), f4 is the residual of short-regime dealer indifference equation (34), and f5 is the residual

of the short-regime market indifference curve (35).

In equilibrium, bond market clearing (27) and synthetic lending market clearing (30) implies

f3 = qbond

DH +Dsyn = qsyn

By assumption, rois > rtri > rsec, and in any equilibrium, rsyn ≥ rois. It follows that

2ersyn
≥ 2erois

> ersec
+2erois

− ertri
> ersec

+ erois
+(1−h)(erois

− ertri
),

and hence that

ersyn
+(1−h)(ertri

− erois
)> ersec

+ erois
− ersyn

.

It follows that

f4(y,rsyn;Sbond,yQ)< f1(y,rsyn;Sbond,yQ).
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In a long-regime equilibrium, qbond > 0, so

q̄ = qbond +qsyn

Therefore,

f5(y,rsyn;Sbond,yQ) = q̄+ f3(y,rsyn;Sbond,yQ)−Dsyn(rsyn − rois)−DH(ny− rsyn − (n−1)yP)

= q̄+qbond −qsyn

= 2qbond

> 0

Furthermore, the equilibrium conditions in the long equilibrium indicates

f1 = f2 = 0, f3 = qbond > 0

In a short-regime equilibrium, qbond < 0, so

q̄ =−qbond +qsyn

Therefore,

f2(y,rsyn;Sbond,yQ) = q̄− f3(y,rsyn;Sbond,yQ)−Dsyn(rsyn − rois)−DH(ny− rsyn − (n−1)yP)

= q̄−qbond −Dsyn(rsyn − rois)−DH(ny− rsyn − (n−1)yP)

= q̄−qbond −qsyn

=−2qbond

> 0

Furthermore, the equilibrium conditions in the short equilibrium indicates

f4 = f5 = 0, f3 = qbond < 0
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In an intermediate-regime equilibrium, f3 = qbond = 0, so

q̄ = qsyn

and

f2(y,rsyn;Sbond,yQ) = q̄−qbond −qsyn = 0

f5(y,rsyn;Sbond,yQ) = q̄+qbond −qsyn = 0

Furthermore, the intermediate-regime equilibrium requires that the yield is between the long and

short thresholds, so

f1 ≥ 0 ≥ f4

Note that f1, f3, and f5 are decreasing in y and increasing in rsyn, whereas f2 is increasing in

both y and rsyn and f4 is decreasing in both in both y and rsyn.

We next show that the existence of either a long or a short equilibrium rules out the existence

of another kind of equilibrium. Since all equilibria involve qbond > 0,qbond < 0, or qbond = 0, it

follows that an intermediate-regime equilibrium cannot coexist with other equilibria as well (i.e.,

the uniqueness of the intermediate-regime equilibrium holds once we prove the other two). Thus,

the equilibrium if exists must be unique.

F.4.1 Uniqueness of a Long Regime Equilibrium

Suppose there is a (ylong,r
syn
long) that is a long equilibrium. Equilibrium conditions imply

f4(ylong,r
syn
long; ·)< 0 = f1(ylong,r

syn
long; ·) = f2(ylong,r

syn
long; ·)

f3(ylong,r
syn
long; ·)> 0, f5(ylong,r

syn
long; ·)> 0

The goal is to show that there cannot be another equilibrium in the short or the intermediate regime.

1. Now suppose there is another equilibrium (y,rsyn) that is in the intermediate regime, which

implies

f2(y,rsyn; ·) = f3(y,rsyn; ·) = f5(y,rsyn; ·) = 0

f1(y,rsyn; ·)≥ 0 ≥ f4(y,rsyn; ·)
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If rsyn > rsyn
long, we must have y > ylong by f3(y,rsyn; ·)< f3(ylong,r

syn
long; ·), but in this case,

f2(y,rsyn; ·)> f2(ylong,r
syn
long; ·) = 0,

which results in a contradiction.

If rsyn < rsyn
long, we have have y < ylong by f1(y,rsyn; ·)> f1(ylong,r

syn
long; ·), but in this case

f2(y,rsyn; ·)< f2(ylong,r
syn
long; ·) = 0,

whcih reuslts in a contradiction.

If rsyn = rsyn
long, it is not possible to simultaneously increase f1 and decrease f3 by changing y,

and therefore no intermediate equilibrium exists.

Consequently, there is no alternative equilibrium in the intermediate regime.

2. Now suppose there is another equilibrium (y,rsyn) that is in the short regime,which implies

f1(y,rsyn; ·)> 0 = f4(y,rsyn; ·) = f5(y,rsyn; ·)

f2(y,rsyn; ·)> 0, f3(y,rsyn; ·)< 0

If rsyn > rsyn
long, we must have y> ylong by f3(y,rsyn)< f3(ylong,r

syn
long; ·), but in this case f4(y,rsyn; ·)<

f4(ylong,r
syn
long; ·)< 0, which leads to a contradiction.

If rsyn < rsyn
long, we have have y < ylong by f1(y,rsyn; ·) > f1(ylong,r

syn
long; ·), but in this case

f2(y,rsyn; ·)< f2(ylong,r
syn
long; ·) = 0, which again leads to a contradiction.

If rsyn = rsyn
long, it is not possible to simultaneously increase f1 and decrease f3 by changing y,

and therefore no short equilibrium exists.

Consequently, there is no alternative equilibrium in the long regime.

F.4.2 Uniqueness of a Short Regime Equilibrium

Suppose there is a (yshort ,r
syn
short) that is a short equilibrium. Equilibrium conditions imply

f1(yshort ,r
syn
short ; ·)> 0 = f4(yshort ,r

syn
short ; ·) = f5(yshort ,r

syn
short ; ·)
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f2(yshort ,r
syn
short ; ·)> 0, f3(yshort ,r

syn
short ; ·)< 0

1. Now suppose there is another equilibrium (y,rsyn) in the intermediate regime, which implies

f2(y,rsyn; ·) = f3(y,rsyn; ·) = f5(y,rsyn; ·) = 0

f1(y,rsyn; ·)≥ 0 ≥ f4(y,rsyn; ·)

If rsyn > rsyn
short , we must have y > yshort by f5(y,rsyn; ·) = f5(yshort ,r

syn
short ; ·), but in this case

f2(y,rsyn; ·)> f2(yshort ,r
syn
short ; ·)> 0, which leads to a contradiction.

If rsyn < rsyn
short , we have have y < yshort by f5(y,rsyn; ·) = f5(yshort ,r

syn
short ; ·), but in this case

f4(y,rsyn; ·)> f4(yshort ,r
syn
short ; ·) = 0, which leads to a contradiction.

If rsyn = rsyn
short , then by f5(y,rsyn; ·) = 0 we must have y = yshort . However, then this leads to

f3(y,rsyn; ·) = f3(yshort ,r
syn
short ; ·)< 0, which is a contradiction.

Consequently, there is no alternative equilibrium in the intermediate regime.

2. Now suppose there is another equilibrium (y,rsyn) in the long regime, which implies

f4(y,rsyn; ·)< 0 = f1(y,rsyn; ·) = f2(y,rsyn; ·)

f3(y,rsyn; ·)> 0, f5(y,rsyn; ·)> 0

If rsyn > rsyn
short , we have have y > yshort by f1(y,rsyn; ·) < f1(yshort ,r

syn
short ; ·), but in this case

f2(y,rsyn; ·)> f2(yshort ,r
syn
short ; ·)> 0, which is a contradiction.

If rsyn < rsyn
short , we must have y < yshort by f3(y,rsyn) > f3(yshort ,r

syn
short ; ·), but in this case

f4(y,rsyn; ·)> f4(yshort ,r
syn
short ; ·) = 0, which is a contradiction.

If rsyn = rsyn
short , it is not possible to simultaneously increase f3 and decrease f1 by changing y,

and therefore no long equilibrium exists.

Consequently, there is no alternative equilibrium in the short regime.

F.4.3 Equilibrium Existence

Next, we prove the existence of the equilibrium. The high-level idea is to construct the equilibrium

as a convex mapping from a compact and convex set to itself, and then apply the Kakutani fixed-

point theorem.
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First, we show the compactness of the state space (y,rsyn).

Compactness of the y dimension

In any equilibrium, we must have

f3(y,rois;Sbond,yQ)≤ f3(y,rsyn;Sbond,yQ)≤ q̄.

Because f3 is decreasing in y, there is a ymin such that

f3(ymin,rois;Sbond,yQ)> q̄,

and any equilibrium must have y ≥ ymin. We must also have, in any equilibrium,

f3(y,rsyn;Sbond,yQ)≥−q̄,

which yields, by DH ≥ 0,

e−nySbond −DU(ny− ybill − (n−1)yP)≥−q̄.

Defining ymax by

e−nymaxSbond −DU(nymax − ybill − (n−1)yP) =−q̄,

it follows that y ≤ ymax.

Compactness of the rsyn dimension

Define rmin as

Dsyn(rmin − rois) = q̄,

By assumption Dsyn(0)> q̄ and Dsyn is a strictly decreasing function, we have rmin − rois > 0. For

any rsyn < rmin,

Dsyn(rsyn − rois)> q̄,

which violates the synthetic market clearing condition in (30). Consequently, in any equilibrium,

rsyn ≥ rmin.

Next, we will find an upper bound rmax such that for any rsyn > rmax, one of the market clearing

conditions are violated. First, we note that there exists a rmax
1 such that for all rsyn > rmax

1 , for any
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feasible y we consider, i.e. y ∈ [ymin,ymax],

e−ny(1−h)(ertri
− erois

)+ ersyn
> exp(−(n−1)yQ)> e−ny(ersec

+ erois
− ersyn

).

which says that y∈ (ys,yl) and thus the equilibrium is in the intermediate regime and dealer chooses

qbond = 0, and supply q̄ to the synthetic lending market. We will show that if rsyn is too large, the

synthetic lending market demand will fall below this supply.

Define synthetic lending demand as

m(y,rsyn) = Dsyn(rsyn − rois)+DH(ny− rsyn − (n−1)yP).

which decreases in rsyn. There exists a rmax ≥ rmax
1 such that, for all rsyn > rmax and y ∈ [ymin,ymax],

m(y,rsyn)< q̄,

which breaks the synthetic lending market clearing condition.

Consequently, if rsyn ≥ rmax, no equilibrium can exist.

Convex and Closed Correspondence

So far we have found a compact and convex space C = [ymin,ymax]× [rmin,rmax] where the

equilibrium (y,rsyn) must belong. Next, we define the correspondence for the equilibrium and

prove that it is convex and closed.

The mapping we construct will constitute four dimensions, including (y,rsyn), the dealer bond

position qbond , and dealer synthetic lending qsyn.

From the dealer optimization problem, the demand correspondence only depends on (y,rsyn)

and is defined as follows

Q(y,rsyn) =



{(q̄,0)} if f1(y,rsyn;Sbond,yQ)< 0

{(qbond,qsyn) ∈ R2
+ : qbond +qsyn = q̄} if f1(y,rsyn;Sbond,yQ) = 0,

{(qbond,qsyn) ∈ R−×R+ : −qbond +qsyn = q̄} if f4(y,rsyn;Sbond,yQ) = 0,

{(−q̄,0)} if f4(y,rsyn;Sbond,yQ)> 0,

{(0, q̄)} otherwise.
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The first case f1 < 0 is the only-long region where y > yl . The second case f1 = 0 is the long

region where y = yl . The third case f4 = 0 is the sell region where y = ys. The fourth case f4 > 0

is the sell-only region where y < ys. The fifth case is the intermediate region where ys < y < yl .

Define the aggregate excess demand correspondence as

Z(y,rsyn) = {(z1,z2} ∈ R2 : (z1 + f3(y,rsyn; ·),m(y,rsyn)− z2) ∈ Q(y,rsyn)}.

Here, z1 represents the excess demand for bonds, and z2 is the excess demand for synthetic loans.

By definition, f3(·) is the bond supply less non-intermediary demand, and hence f3(·)+ z1 must

equal the intermediary demand qbond . Likewise, m(·) is synthetic loan demand, and m(·)− z2 must

equal the synthetic loan supply qsyn.

Note that this correspondence is non-empty, u.h.c. (by the u.h.c. property of q, which ultimately

arises from the continuity of f1, f4, and the continuity of f3 and m). Note that it is also convex-

valued, a property it inherits from Q. Define the maximum and minimum possible excess demands

by

zbond
max = max

(y,rsyn)∈[ymin,ymax]×[rmin,rmax]
q̄− f3(y,rsyn; ·),

zbond
min = min

(y,rsyn)∈[ymin,ymax]×[rmin,rmax]
−q̄− f3(y,rsyn; ·),

zsyn
max = max

(y,rsyn)∈[ymin,ymax]×[rmin,rmax]
m(y,rsyn),

zsyn
min = min

(y,rsyn)∈[ymin,ymax]×[rmin,rmax]
m(y,rsyn)− q̄,

Now define a price player, who solves, given any vector (z1,z2) ∈ [zbond
min ,zbond

max ],

max
(y,rsyn)∈[ymin,ymax]×[rmin,rmax]

(y,rsyn) ·

[
−z1

z2

]
.

Let p∗(z) be the optimal policy correspondence, and note that it is non-empty, u.h.c., and

convex-valued (which follows from the concavity of the objective).
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Now define the correspondence

g(y,rsyn,z) =

[
p∗(z)

Z(y,rsyn)

]

which maps [ymin,ymax]× [rmin,rmax]× [zbond
min ,zbond

max ]× [zsyn
min,z

syn
max] to itself. Note that this set is

compact, and by the u.h.c. properties of p∗ and Z and the compactness of this set, g has a closed

graph. Consequently, by Kakutani’s fixed point theorem, a fixed point (y∗,rsyn∗,z∗) exists.

By construction, at ymin,

f3(ymin,rois;Sbond,yQ)> q̄,

and consequently all values Z1(y,rsyn) are negative. The best response of the price player at this

point would be ymax, and hence there cannot be a fixed point with y∗ = ymin. Essentially the same

logic rules out y∗ = ymax. Similarly, if rsyn∗ = rmin, then all values of Z2(y∗,rsyn∗) are positive,

and the price player’s best response is rmax, and hence this cannot be a fixed point. Likewise, if

rsyn∗ = rmax, then all values of Z2(y∗,rsyn∗) are negative, and the price player’s best response is

rsyn = rmin. It follows that the fixed point is interior, and hence that z∗ = Z(y∗,rsyn∗) = (0,0). Note

that a fixed point with z∗ = (0,0) cannot exist in which there is no supply of synthetic lending;

consequently, the equilibrium is either a long regime equilibrium,

f4(y,rsyn;Sbond,yQ)< f1(y,rsyn;Sbond,yQ) = 0,

a short regime equilibrium,

0 = f4(y,rsyn;Sbond,yQ)< f1(y,rsyn;Sbond,yQ),

or an intermediate equilibrium,

f4(y,rsyn;Sbond,yQ)< 0 < f1(y,rsyn;Sbond,yQ).

F.4.4 Bond Supply and Equilibrium Regime

To prove that the existence of cutoffs SS and SB with 0 ≤ SS ≤ SB ≤ ∞, such that the short-regime,

the intermediate regime, and the long-regime fall into the three regions, we simply prove that there
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is a ranking of the equilibrium along the supply of bonds S.

Consider Sbond = S. According to the previous proofs, an equilibrium (y,rsyn) exists and must

be unique.

Long Equilibrium

First, we show that if S corresponds to a long-regime equilibrium, then for any S̄ > S, the

equilibrium (ȳ, r̄syn) must also be a long equilibrium.

Suppose instead the equilibrium for Sbond = S̄ is a short-regime equilibrium with (ȳ, r̄syn).

Then we must have y = yl > ys = ȳ. Furthermore, f2(y,rsyn;S,yQ) = 0 and f2(ȳ, r̄syn;S,yQ) >

f2(ȳ, r̄syn; S̄,yQ)> 0. By monotonicity of f2, we must have r̄syn > rsyn. Therefore, by monotonicty

of f5, we have

f5(ȳ, r̄syn; S̄,yQ)> f5(y,rsyn; S̄,yQ)

However, in the long regime, f5(ȳ, r̄syn; S̄,yQ) = 0, and in the short regime, f5(y,rsyn; S̄,yQ) >

f5(y,rsyn;S,yQ)> 0, which leads to a contradiction. Thus, S̄ cannot correspond to a short equilib-

rium.

Next, suppose that S̄ corresponds to an intermediate-regime equilibrium. Then we have y= yl ≥
ȳ, f3(ȳ, r̄syn; S̄,yQ) = 0. For the equilibrium of S, we have f3(y,rsyn; S̄,yQ) > f3(y,rsyn;S,yQ) > 0.

By the monotonicity of f3, rsyn > r̄syn. Thus, f2(ȳ, r̄syn;S,yQ)< f2(y,rsyn;S,yQ).

However, by the properties of long and intermediate regimes, we also have f2(y,rsyn;S,yQ)> 0

and f2(ȳ, r̄syn;S,yQ)> f2(ȳ, r̄syn; S̄,yQ) = 0, which leads to a contradiction.

In summary, if S is a long-regime equilibrium, for any S̄ > S, the equilibrium (ȳ, r̄syn) must also

be a long-regime equilibrium.

Short Equilibrium

Second, we show that if S corresponds to a short-regime equilibrium, then for any S < S, the

equilibrium solution (y,rsyn) must also be a short-regime equilibrium.

Suppose that instead the equilibrium for Sbond = S is a long-regime equilibrium. Then we must

have y = ys < yl = y. Furthermore, f5(y,rsyn;S,yQ)> f5(y,rsyn;S,yQ)> 0, and f5(y,rsyn;S,yQ) =

0. By monotonicity of f5, we get rsyn > rsyn. Thus, by monotonicity of f2, we obtain

f2(y,rsyn;S,yQ)< f2(y,rsyn;S,yQ)
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However, by the properties of long and short regimes, we must have f2(y,rsyn;S,yQ)< f2(y,rsyn;S,yQ)=

0, and f2(y,rsyn;S,yQ)> 0, which leads to a contradiction.

Suppose that the equilibrium for Sbond = S is an intermediate-regime equilibrium. Then we

must have y = ys ≤ y. Furthermore, f5(y,rsyn;S,yQ)> f5(y,rsyn;S,yQ) = 0, and f5(y,rsyn;S,yQ) =

0. By monotonicity of f5, we get rsyn > rsyn. Thus, by monotonicity of f2, we obtain

f2(y,rsyn;S,yQ)< f2(y,rsyn;S,yQ)

However, by the properties of short and intermediate regimes, we must have f2(y,rsyn;S,yQ) > 0

and f2(y,rsyn;S,yQ)< f2(y,rsyn;S,yQ) = 0, which leads to a contradiction.

In summary, if S is a short-regime equilibrium, for any S < S, the equilibrium (y,rsyn) must

also be a short-regime equilibrium.

Regime Ranking

From the above discussions, we know that there must be cutoffs SS and SB with 0 ≤ SS ≤ SB ≤
∞, such that a short-regime equilibrium exists in the left region, an intermediate-regime equilibrium

exists in the middle region, and a long-regime equilibrium exists in the right region. However, we

still have to prove whether the intervals are open or closed.

Intervals for Regimes

We now show that the interval of long-regime equilibrium should be (SB,∞) instead of [SB,∞).

Suppose that Sbond = S is a long-regime equilibrium, with solutions (y,rsyn), and qbond . By defini-

tion, qbond > 0.

In the long regime, f3(y,rsyn;S,yQ) = qbond . We know that qbond > 0 increases in the total

supply of bond and the mapping is continuous. Therefore, there exists a smaller bond supply

Sbond = S − ε for ε > 0, such that the new equilibrium still has qbond > 0. Consequently, the

interval of Sbond for the long-regime equilibrium must be an open set.

Similarly, the interval for the short-regime equilibrium must also be an open set, (−∞,SB).

F.4.5 Term Premium and Equilibrium Regime

Next, we study how the term premium yQ affects the equilibrium. Consider yQ. According to

previous proofs, an equilibrium solution (y,rsyn) exists and is unique.
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Long Equilibrium

First, we show that if yQ corresponds to a long-regime equilibrium, then for any ȳQ > yQ, the

equilibrium (ȳ, r̄syn) must also be a long equilibrium.

Suppose instead the equilibrium for ȳQ is a short-regime equilibrium with (ȳ, r̄syn). Then

we must have y = yl > ys = ȳ. Furthermore, f2(y,rsyn;Sbond,yQ) = 0 and f2(ȳ, r̄syn;Sbond,yQ) =

f2(ȳ, r̄syn;Sbond, ȳQ) > 0. By monotonicity of f2, we must have r̄syn > rsyn. Therefore, by mono-

tonicty of f5, we have

f5(ȳ, r̄syn;Sbond,yQ)> f5(y,rsyn;Sbond,yQ)

However, in the short regime, f5(ȳ, r̄syn;Sbond, ȳQ) = f5(ȳ, r̄syn;Sbond,yQ) = 0, and in the long

regime, f5(y,rsyn;Sbond,yQ) > 0, which leads to a contradiction. Thus, ȳQ cannot correspond to a

short equilibrium.

Next, suppose that ȳQ corresponds to an intermediate-regime equilibrium. Then we have y =

yl ≥ ȳ, f3(ȳ, r̄syn;Sbond,yQ) = f3(ȳ, r̄syn;Sbond, ȳQ) = 0. For the long-regime equilibrium of yQ, we

have f3(y,rsyn;Sbond,yQ)> 0. By the monotonicity of f3, rsyn > r̄syn. Thus, f2(ȳ, r̄syn;Sbond,yQ)<

f2(y,rsyn;Sbond,yQ).

However, by the properties of long and intermediate regimes, we also have f2(y,rsyn;Sbond,yQ)=

0 and f2(ȳ, r̄syn;Sbond,yQ) = f2(ȳ, r̄syn;Sbond, ȳQ) = 0, which leads to a contradiction.

In summary, if yQ is a long-regime equilibrium, for any ȳQ > yQ, the equilibrium (ȳ, r̄syn) must

also be a long equilibrium.

Short Equilibrium

Second, we show that if yQ corresponds to a short-regime equilibrium, then for any yQ < yQ,

the equilibrium (y,rsyn) must also be a short-regime equilibrium.

Suppose that instead the equilibrium for yQ is a long-regime equilibrium. Then we must have

y= ys < yl = y. Furthermore, f5(y,rsyn;Sbond,yQ)= f5(y,rsyn;Sbond,yQ)> 0, and f5(y,rsyn;Sbond,yQ)=

0. By monotonicity of f5, we get rsyn > rsyn. Thus, by monotonicity of f2, we obtain

f2(y,rsyn;Sbond,yQ)< f2(y,rsyn;Sbond,yQ)

However, by the properties of long and short regimes, we must have

f2(y,rsyn;Sbond,yQ) = f2(y,rsyn;Sbond,yQ) = 0,
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and f2(y,rsyn;Sbond,yQ)> 0, which leads to a contradiction.

Suppose that the equilibrium for yQ is an intermediate-regime equilibrium. Then we must have

y= ys ≤ y. Furthermore, f3(y,rsyn;Sbond,yQ)= f3(y,rsyn;Sbond,yQ)= 0, and f3(y,rsyn;Sbond,yQ)<

0. By monotonicity of f3, we get rsyn > rsyn. Thus, by monotonicity of f2, we obtain

f2(y,rsyn;Sbond,yQ)< f2(y,rsyn;Sbond,yQ)

However, by the properties of short and intermediate regimes, we must have f2(y,rsyn;Sbond,yQ)>

0 and f2(y,rsyn;Sbond,yQ) = f2(y,rsyn;Sbond,yQ) = 0, which leads to a contradiction.

In summary, if yQ is a short-regime equilibrium, for any yQ < yQ, the equilibrium (y,rsyn) must

also be a short-regime equilibrium.

Regime Ranking

From the above discussions, we know that there must be cutoffs yS and yB with 0 ≤ yS ≤ yB ≤
∞, such that a short-regime equilibrium, an intermediate-regime equilibrium, and a long-regime

equilibrium exits in the left, middle and right regions. However, we still need to determine whether

those intervals are open or closed sets.

Intervals for Regimes

We now show that the interval of long-regime equilibrium should be (yB,∞) instead of [yB,∞).

Suppose that yQ is a long-regime equilibrium, with solutions (y,rsyn), and qbond . By definition,

qbond > 0.

In the long regime, we know that qbond > 0 is a continuous function of yQ. Therefore, there

exists a smaller risk-neutral expectation yQ − ε , where the new equilibrium is still in the long

regime with qbond > 0. Consequently, the interval of yQ for the long-regime equilibrium must be

an open set.

Similarly, the interval of yQ for the short-regime equilibrium must also be an open set.
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